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Abstract. We consider an elliptic partial differential equation with a random diffusion parameter
discretized by a stochastic collocation method in the parameter domain and a finite element method
in the spatial domain. We prove for the first time convergence of a stochastic collocation algorithm
which adaptively enriches the parameter space as well as refines the finite element meshes.

1. Introduction

Partial differential equations with random data are a ubiquitous tool in the modeling of real
life phenomena such as structural vibrations [21], groundwater flow [31], and composite material
behavior [1]. The efficient approximation of solutions of those equations is a challenging problem
as it requires the approximation of high-dimensional functions in a parameter domains as well as
low-dimensional but in general non-regular functions in the spatial domain. While effective ways to
generate the random data have been studied in [23, 34], we focus on the numerical approximation
of the resulting solution of the PDE.

To that end, we consider an adaptive stochastic collocation algorithm for a random diffusion
problem proposed in [32] and extend it to include spatial mesh refinement for a finite element
method. We give the first proof of convergence of the adaptive algorithm to the exact solution
and even derive some convergence rates as well as optimality statements. The main difficulty to
overcome is the interplay of parametric enrichment and finite element refinement to ensure overall
convergence.

Stochastic collocation is a so-called non-intrusive method, which has the big advantage that it
does not require new solver algorithms, but reuses deterministic solvers only. Roughly speaking,
the exact solution depends on a parametric variable (the random input) and a spatial variable.
While the spatial dependence is resolved by standard finite element approximation, the parametric
dependence is discretized by collocation. For each collocation point, we only need to solve a
deterministic problem and therefore can reuse well tested finite element codes.

Problems of this kind have been considered in many prior works. See, e.g., [37] for the (apparent)
first appearance of the term stochastic collocation in the field of computational fluid dynamics. The
authors combine a polynomial chaos expansion with a collocation solver. This is generalized and
formalized in [48], where different strategies and collocation points are discussed, and error analysis
is provided. In [2], rigorous error analysis is developed for the discretization of a random PDE with
a combination of standard finite elements and Gaussian collocation points (and also sparse grid
points). In [39], dimension dependent anisotropy of the solution is addressed by use of anisotropic
sparse grids and in [5], the optimal choice of the sparse grid parameters (the multi-index set) is
discussed.
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More recent works, which technically do not use stochastic collocation but still deal with sim-
ilar mathematical techniques and problems, include [15, 12] for quasi-Monte Carlo sampling ap-
proaches, [14, 16] for multi-level methods, and [13] for a multi-index method. Those methods have
in common that they do not recover the full probability distribution of the exact solution but only
compute a certain quantity of interest of it, e.g., the expectation or higher moments.

Another important and mathematically well-understood branch of methods for PDEs with ran-
dom parameters are so-called stochastic Galerkin methods. Belonging to the class of intrusive
methods, they employ a Galerkin method in both the spatial and the parametric domain. Algo-
rithms have been proposed in [29, 24, 28, 38, 49].

The question of whether intrusive or non-intrusive algorithms are more advantageous is a fun-
damental one and depends on the specific problem setting and goals of the user. An overview is
given in [30].

When dealing with PDEs with random data, adaptivity comes into mind for two reasons: First,
spatial adaptivity is necessary to resolve singularities originating from geometric features (e.g.,
concave corners) and from irregular coefficients induced by the random input. Uniform meshes
suffer from drastic reduction of convergence rate in the presence of such singularities, see, e.g., [7]
for an exhaustive overview on h-adaptive methods.

Second, parametric adaptivity is necessary to resolve anisotropies in the random coefficient. The
random input is often parameterized on high-dimensional parameter domains, and usually not all
directions of that domain are equally important. Therefore, a straightforward tensor approximation
approach would suffer dramatically from the curse of dimensionality. Here, an adaptive approach
can outperform uniform methods significantly, see [10, 11] for an overview.

Adaptive approximation of high-dimensional parameter domains has a long history. A start-
ing point is often the work by Kolmogorov [35], in which the decomposition of a high-dimensional
function into a sum of lower dimensional terms is discussed. Similar ideas have been pursued in sta-
tistics, we mention, e.g., so-called additive models [33], Multivariate adaptive regression splines [25],
or the ANOVA decomposition [46, 50]. One of the first dimension adaptive algorithms for sparse
grids can be found in [27]. The method uses an error estimator that, in practice, agrees very well
with the actual error but does not constitute a rigorous upper bound (it may underestimate the
error by an arbitrarily large factor in exotic cases).

For PDEs with random data, adaptive stochastic Galerkin algorithms have been investigated
in [6, 20] with convergence and even optimality proofs. Even low-rank tensor formats have been
used in [22, 17] to speed up the computation of stochastic Galerkin matrix and [17] shows that in
certain cases, the low-rank approximation of the full tensor product approximation can be stored
and manipulated faster than some adaptive sparse approximations.

An adaptive sparse grid collocation algorithm based on a reliable error estimator was proposed
in [32]. The work uses a sparse grid interpolation operator to discretize the parametric domain and
proposes an error estimator which consists of a parametric estimator as well as a finite element
estimator.

A couple of recent works deal with similar approaches. A non-adaptive but true multi-level col-
location method is proposed in [45]. The multi-level aspect allows the method to treat high-fidelity
finite element approximations with low-fidelity parametric approximation and vice versa. This fur-
ther reduces the impact of the curse of dimensionality and results in a very efficient algorithm.
Such an approach could be built on top of the method proposed in the present manuscript in order
to reduce the cost. An adaptive version of the multi-level algorithm was recently proposed in [36].
While the algorithm is adaptive in both the parameter and spatial domain, the authors use an error
estimator from [27] that is not an upper bound for the error and hence can not prove convergence
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without extra assumptions. Finally, the very recent but independent work [19] analyzes the same
parameter adaptive algorithm as in this work and proves convergence. However, they do not con-
sider spatial adaptive refinement of the finite element meshes. As we show in numerical experiments
in Section 4, spatial adaptivity clearly improves overall performance and hence should be included
in any adaptive algorithm (however, a careful choice of the adaptive strategy is important as minor
variations can lead to significant performance differences).

The remainder of this work is organized as follows: We present the model problem in Section 1.1
and describe the adaptive algorithm in Section 1.3. In Section 2, we prove convergence of the
adaptive algorithm for the pure parameter enrichment problem (i.e., the problem considered in [32]),
and Section 3 proves the convergence of the full adaptive algorithm including spatial adaptivity
(with one adaptive mesh per collocation point or one global adaptive mesh). Section 4 presents
some numerical experiments and in the final section, we draw some conclusions.

1.1. Problem statement. Consider an integer d ≥ 2 and an open bounded domain D ⊂ Rd with
Lipschitz continuous boundary ∂D. Let (Ω,F ,P) be a complete probability space. Let Yn : Ω→ R
be independent random variables with ranges Γn := Yn(Ω) and densities ρn : Γn → R≥0 for all
n ∈ 1, . . . , N . In the present work, we assume that the ranges Γn are bounded subsets of R. Let
Γ :=

⊗N
n=1 Γn ⊂ RN and ρ :=

⊗N
n=1 ρn. The triple (Γ,B(Γ), ρ(y)dy) (B(Γ) the Borel σ-algebra on

Γ) is a probability space. Consider f ∈ L2(D) and a : Γ×D → R with the following properties:

• uniform boundedness

∃amin, amax ∈ R>0 : amin ≤ a(y, x) ≤ amax ρ-a.e. y ∈ Γ, ∀x ∈ D

• affine dependence on y ∈ Γ

∀n ∈ 0, . . . , N ∃ an : D → R : a(y, x) = a0(x) +
N∑

n=1

an(x)yn

• regularity in space ∇a(y, ·)|T ∈ L∞(T ) for all elements T of a coarse initial mesh Tinit of
D.

We consider the parametric weak formulation of the Poisson problem: Find u : Γ→ V such that

(1)

∫
D
a(x,y)∇u(x,y) · ∇v(x)dx =

∫
D
f(x)v(x)dx ∀v ∈ V, ρ-a.e. y ∈ Γ.

Here, V denotes the Sobolev space H1
0 (D) with the norm ∥v∥V := ∥∇v∥L2(D).

Due to uniform ellipticity of the problem the exact solution is unique and (see also, e.g., [2,
Lemma 3.1]) there exists τ ⊂ RN

>0 such that u : Γ→ V can be extended to a bounded holomorphic
function on the set

(2) Σ(Γ, τ ) :=
{
z ∈ CN : dist(zn,Γn) ≤ τn ∀n = 1, . . . , N

}
.

1.2. The sparse grid stochastic collocation interpolant. We aim at building a discretization
of the solution u of (1) in the space

(3) P(Γ,W ) ∼= P(Γ)⊗W,

where P(Γ) is a finite-dimensional polynomial space on Γ and W is a finite-dimensional subspace of
V . In order to do so, we fix a set H of distinct collocation points in Γ and denote by {Ly}y∈H the

related set of Lagrange basis functions (i.e. the unique set of polynomials of minimal degree over
Γ such that Lz(y) = δy,z for any y, z ∈ H). By P(Γ), we denote the polynomial space spanned
by {Ly}y∈H. For any y ∈ H, we consider Ty, a shape-regular triangulation on D depending on

y, and Vy := S1
0(Ty), the classical finite elements space of piecewise-linear functions over Ty with
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zero boundary conditions. We denote by Uy ∈ Vy the finite element solution of the problem for the
parameter y, i.e.,

(4a)

∫
D
a(x,y)∇Uy(x) · ∇v(x)dx =

∫
D
f(x)v(x)dx ∀v ∈ Vy.

Finally, the discretization of u takes the form

(4b) uH(x, z) =
∑
y∈H

Uy(x)Ly(z).

The number of degrees of freedom of uH is
∑

y∈H dim (Vy). The space W from (3) will be the

smallest subspace of V that contains each of the finite element spaces {Vy}y∈H. The set of colloca-
tion nodes and the polynomial space are defined following the sparse grid construction, which we

now describe briefly. We start by considering a family of 1D nodes, i.e. a set Yn :=
{
y
(n)
j

}n

j=1
⊂ R

defined for any positive integer n. We require the family of Yn to be nested, i.e. Yn ⊂ Yn+1 for
any n ∈ N. The particular number of the quadrature nodes used in the algorithm is encoded in the
function m(·) : N→ N. Finally, let I ⊂ NN be a downward-closed multi-index set, i.e.,

∀i ∈ I, i− en ∈ I ∀n = 1, . . . , N such that in > 1.

with en the n-th unit vector in NN . The sparse grid interpolant of a function v ∈ C0(Γ, V ) is

(5) SI [v](y) :=
∑
i∈I

∆m(i)(v)(y),

where the hierarchical surplus operator is defined as ∆m(i) :=
⊗N

n=1∆
m(in), the detail operator

is defined as ∆m(in) := Um(in)
n − Um(in−1)

n and Um(in)
n : C0(Γn) → Pm(in)−1(Γn) is the Lagrange

interpolant with respect to the nodes Ym(in) ⊂ Γn. Finally, we set U0
n ≡ 0 for all n ∈ 1, . . . , N .

The polynomial space P(Γ) introduced in (3) corresponds to

PI(Γ) :=
∑
i∈I

Pm(i)−1(Γ) where Pm(i)−1(Γ) :=
N⊗

n=1

Pm(in)−1(Γn).

The sparse grid stochastic collocation interpolant can be written as a linear combination of tensor
product Lagrange interpolants (see, for instance, [47]):

(6) SI [u](y) =
∑
i∈I

ci

N⊗
n=1

Um(in)
n (u)(y), ci :=

∑
j∈{0,1}N
i+j∈I

(−1)|j|1 .

The set of collocation points H in (6) and also in (4) is referred to as sparse grid and we will also
denote it by HI in order to make the dependence on I explicit. The nestedness of the family of 1D
nodes Yn makes SI [·] interpolatory in the collocation nodes (see [4, proposition 6])

SI [u](y) = u(y) ∀y ∈ HI .

Due to this fact, (4) can be rewritten as

(7) uH(x, z) =uI(x, z) = SI [u](x, z) =
∑
y∈HI

Uy(x)Ly(z) x ∈ D,z ∈ Γ.

The nestedness is satisfied, e.g., by choosing Clenshaw-Curtis (CC) nodes to construct the sparse
grid, i.e.

y
(m)
j := − cos

π(j − 1)

m− 1
∀j = 1, . . . ,m,
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with the doubling rule

(8) m(i) :=


0 i = 0,

1 i = 1,

2i−1 + 1 i > 1.

We will stick with this particular choice for the remainder of this work for simplicity, remark
however that other choices are possible (see, e.g., [32]). The essential properties of Yn used in the
proofs below are nestedness Yn ⊆ Yn+1 and the fact that the Lebesgue constants of the associated
interpolation operators grow sub-exponentially.

The requirement on the multi-index set I to be downward-closed is needed to ensure that the
sum (5) is actually telescopic.

Since u is analytic in y, we may consider the expansion (see again [32])

(9) u(y) =
∑
i∈NN

∆m(i)u(y) a.e. y ∈ Γ

converging absolutely in V . As it will be central in the following discussion, we recall the definition
of the margin of a multi-index set I:

MI :=
{
i ∈ NN : i− en ∈ I for some n ∈ 1, . . . , N such that in > 1

}
.

1.3. The adaptive stochastic collocation finite element algorithm. The adaptive algorithm
employs the error estimator proposed in [32, Proposition 4.3]. We recall that u denotes the analytic
solution of the problem (1) while the discrete solution is SI [U ] =

∑
y∈HI

UyLy. By U : Γ → W ,

we denote a function that takes the value Uy on the collocation point y ∈ HI (sometimes we will
also use the notation U(y) = Uy).

The total estimator is composed of a parametric estimator

(10) ζSC,I :=
∑
i∈MI

ζi,I , ζi,I :=
∥∥∥∆m(i) (a∇SI [U ])

∥∥∥
L∞(Γ,L2(D))

(the gradient ∇ here acts exclusively on the space variable x ∈ D) as well as a finite element
estimator

ηFE,I :=
∑
y∈HI

ηy∥Ly∥L∞(Γ), ηy :=

∑
T∈Ty

η2y,T

 1
2

,

η2y,T := h2T ∥f +∇ · (a(yk)∇Uy)∥2L2(T ) +
∑
e⊂∂T

he

∥∥∥∥12 [a(y)∇Uy · ne]ne

∥∥∥∥2
L2(e)

,

(11)

where [·]ne denotes the jump over the edge (face) in normal direction ne. The combination of both
yields a reliable upper bound, i.e.,

(12) ∥u− SI [U ]∥L∞(Γ,V ) ≤
1

amin
(CηFE,I + ζSC,I) ,

where amin > 0 appears in the equivalence relation between H1
0 (D) and energy norm

a
1/2
min∥v∥H1

0 (D) ≤
∥∥∥a(y) 1

2∇v
∥∥∥
L2(D)

≤ a1/2max∥v∥H1
0 (D) a.e. y ∈ Γ for all v ∈ H1

0 (D)

and C > 0 depends only on the shape regularity of Tinit. We consider the following adaptive
algorithm.
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Algorithm 1 uϵ ← SCFE(ϵ, θ, α, Tinit)

1: I−1 := ∅
2: I0 := {1}
3: compute finite element solution U0,y on Tinit for all y ∈ HI0

4: for ℓ = 0, 1, 2, ... do
5: Uℓ ← Refine FE spaces (Iℓ, Uℓ, α, θ)
6: compute parametric estimators (ζi,Iℓ)i∈MIℓ

, ζSC,Iℓ

7: compute finite element estimator ηFE,Iℓ
8: if a−1

min(ζSC,Iℓ + CηFE,Iℓ) < ϵ then
9: return uϵ ← SIℓ [Uℓ]

10: end if
11: (Uℓ+1, Iℓ+1)← Refine parameter space(Iℓ, Uℓ, (ζi,Iℓ)i∈MIℓ

, Tinit)
12: end for

The algorithm consists of alternating between enriching the polynomial space PI in Line 11
(Alg. 1) and refining the finite element spaces corresponding to each collocation point independently
from each other in Line 5 (Alg. 1). The intuitive idea behind this choice is the following: In order
for the parameter enrichment routine to make a meaningful choice, the finite element solution in
the collocation points has to be ”close enough” to the exact solution. The algorithm terminates
when the a-posteriori estimator falls below a given tolerance ϵ > 0 in Line 8 (Alg. 1). The reliable
upper bound (12) guarantees that the error of the discrete solution is also bounded by ϵ.

The sub-routine Refine FE spaces reads:

Algorithm 2 U ←Refine FE spaces (I, U, α, θ)

1: compute finite element estimator (ηy)y∈HI
, ηFE,I

2: compute parametric estimator ζSC,I

3: Tol := α 1∑
i∈MI

∏N
n=1 in

ζSC,I

4: while ηFE,I > Tol do
5: find minimal K ⊆

⊔
y∈H Ty :=

⋃
y∈H

⋃
Ty∈Ty(y, Ty) such that∑

(y,Ty)∈K

η2y,Ty
∥Ly∥L∞(Γ) ≥ θη2FE,I

6: for y ∈ H do
7: refine Ty with Ky := {T ∈ Ty : (y, T ) ∈ K} as marked elements
8: end for
9: compute Uy over Ty

10: compute finite element estimator (ηy)y∈HI
, ηFE,I

11: compute parametric estimator ζSC,I

12: Tol← α 1∑
i∈MI

∏N
n=1 in

ζSC,I

13: end while

The aim of this sub-routine is to refine the finite element solutions in the collocation points
until the finite element estimator falls below the tolerance defined in Line 3 (Alg. 2). We use
newest-vertex-bisection with mesh closure for mesh refinement (see, e.g., [44] for further details).
Observe that, since the tolerance depends on the parametric estimator ζSC,I , which in turn depends
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on the discrete solution, the tolerance needs to be re-computed at every finite-element refinement.
This is necessary as one parametric refinement might uncover new features of the solution which
need to be resolved in the finite-element refinement step. In practical computations, this rarely
happens after the first few iterations of the algorithm. Note also that the linear convergence result
in Proposition 3.2 shows that starting from the initial mesh does not significantly increase the
computational cost (at worst case, it contributes logarithmically). It might be possible to prove

convergence without the scaling 1/
∑

i∈MI

∏N
n=1 in of the tolerance in Line 3 of Algorithm 1 (the

experiments in Section 4 indicate that it is not necessary) however with the present techniques we
didn’t find a way to do that.

In Section 3 we will prove that the sub-routine terminates (i.e. that the finite element estimator
eventually falls below the tolerance) and that the choice of tolerance made in Line 3 (Alg. 2) is a
sufficient condition for convergence.

Finally, the sub-routine Refine parameter space reads as follows:

Algorithm 3 (U ′, I ′)←Refine parameter space (I, U , (ζi,I)i∈MI
, Tinit)

1: i := argmaxi∈MI
Pi,I

2: I ′ := I ∪Ai,I

3: U ′ ← update U by computing finite element solution Uy on Tinit for all y ∈ HI′ \ HI

The aim here is to enrich the polynomial space PI as done in [32, Algorithm 1]. At each iteration,
the algorithm enlarges the multi-index set I by adding multi-indices from the margin of I depending
on the values of the pointwise error estimators (ζi,I)i∈I . More precisely, in Line 1 (Alg. 3) we select
a profit maximizer, i.e. a multi index in the margin that maximizes a given profit function Pi,I (see
below for some examples):

(13) i = argmax
i∈MI

Pi,I

(in case more than one multi-index maximizes the profit, we pick the one that comes first in the
lexicographic ordering).
Then, in Line 2 (Alg. 3) I is enlarged by adding Ai,I , the smallest subset ofMI containing i such
that I ∪Ai,I is downward-closed. Finally, in Line 3 (Alg. 3) we compute the finite element solution
over the default mesh Tinit corresponding to each new collocation point, while preserving the old
ones.

We analyze two possible choices of profit:

• Workless profit:

(14) Pi,I :=
∑

j∈Ai,I

ζj,I

• Profit with work:

(15) Pi,I :=

∑
j∈Ai,I

ζj,I∑
j∈Ai,I

Wj

where the work is defined as Wj :=
∏N

n=1 (m(jn)−m(jn−1)).

2. Convergence of the parametric enrichment algorithm

We examine the convergence properties of a simplified version of Algorithm 1, also discussed in
[32]. In the present case, we suppose to be able to sample the function u : Γ → V for any fixed
parameter y ∈ Γ. Thus, a discrete solution is given by the sparse grid interpolant SI [u] ∈ PI(Γ, V ),
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for a downward-close multi-index set I ⊂ NN . Moreover, the a-posteriori estimator, which in the
fully discrete setting was the sum of parametric estimator (10) and finite element estimator (11),
simplifies to ζSC,I :=

∑
i∈MI

ζi,I (no additional term accounting for the finite element discretization)
where the pointwise estimator is

ζi,I :=
∥∥∥∆m(i) (a∇SI [u])

∥∥∥
L∞(Γ,L2(D))

.

In this setting, the reliable upper bound (12) simplifies to: ∥u− SI [u]∥L∞(Γ,V ) ≲ ζSC,I . Workless-

profit and profit with work are defined analogously to (14) and (15) respectively. This simplified
version of the algorithm reads:

Algorithm 4 uϵ ← SC(ϵ)

1: I := {1}
2: uϵ := SI [u]
3: compute ζSC,I

4: while ζSC,I ≥ ϵ do
5: i := argmaxi∈MI

Pi,I
6: I ← I ∪Ai,I

7: uϵ ← SI [u]
8: compute new a-posteriori estimator ζSC,I

9: end while

2.1. Preliminary results.

2.1.1. Stability and convergence of the hierarchical surplus ∆m(i). In this section we recall basic
results on the hierarchical surplus operator ∆m(i) (see for instance [40]). The analysis is carried
out in the L∞(Γ, V ) norm as it is the most ”stringent” among the Lp(Γ, V ) norms for p ∈ [1,∞].
We note that all the arguments below work with other choices of p.

We will first state 1D results (corresponding to the case N = 1). For i ∈ N, the Lebesgue

constant λm(i) of the interpolant Um(i) satisfies the relation

(16)
∥∥∥Um(i)v

∥∥∥
L∞(Γ,V )

≤ λm(i)∥v∥L∞(Γ,V ) ∀v ∈ C0(Γ, V ).

Moreover, since CC nodes and the doubling rule (8) are used, it can be estimated as (see [18])

(17) λm(i) ≤ 2i.

Therefore, the relation (16) can be rewritten explicitly with respect to i as

(18)
∥∥∥Um(i)v

∥∥∥
L∞(Γ,V )

≲ i∥v∥L∞(Γ,V ) ∀v ∈ C0(Γ, V ).

The estimate (18) can be used to derive a stability estimate for the detail operator∥∥∥(Um(i) − Um(i−1)
)
v
∥∥∥
L∞(Γ,V )

≲ i∥v∥L∞(Γ,V ).

Moving to the general case N ∈ N, we can now exploit the tensor product structure of Γ ⊂ RN to
obtain a stability estimate for the hierarchical surplus operator

(19)
∥∥∥∆m(i)v

∥∥∥
L∞(Γ,V )

≲

(
N∏

n=1

in

)
∥v∥L∞(Γ,V ).

8



Since this estimate will be employed several times in the rest of the paper, we denote this bound
on the norm of ∆m(i) by

(20) Λi :=

N∏
n=1

in.

We derive another estimate of
∥∥∆m(i)u

∥∥
L∞(Γ,V )

that relies on the fact that u : Γ→ V is analytic

with respect to y. The tensor product structure of Γ allows us again to start from a 1D results
and then generalize to N dimensions. We state a result that relates the best approximation error
in Pm(Γ, V ) to the size of the domain of the holomorphic extension of u (2).

Lemma 2.1 ([2, Lemma 4.4]). If v ∈ C0(Γ, V ) and it exists τ > 0 such that v admits an analytic
extension to Σ(Γ, τ) (defined in (2)), then for m ∈ N

(21) Em(v) := min
w∈Pm(Γ,V )

∥v − w∥L∞(Γ,V ) ≤
2

eσ − 1
e−σm max

z∈Σ(Γ,τ)
∥v(z)∥V

where σ := log
(

2τ
|Γ| +

√
1 + 4τ2

|Γ|2

)
> 0. □

Since Um(i) is exact on Pm(i)−1(Γ, V ), its error can be expressed as (see [4])∥∥∥u− Um(i)u
∥∥∥
L∞(Γ,V )

≤
(
1 + λm(i)

)
Em(i)−1(u).

Remembering (17) and the previous lemma, the error estimate for Um(i) can be simplified as∥∥∥u− Um(i)u
∥∥∥
L∞(Γ,V )

≲ ie−σm(i) max
z∈Σ(Γ,τ)

∥u(z)∥V .

This estimate can be applied to the detail operator after a triangle inequality to obtain

(22)
∥∥∥∆m(i)u

∥∥∥
L∞(Γ,V )

≲ ie−σm(i−1) max
z∈Σ(Γ,τ)

∥u(z)∥V .

Applying (22) to the multidimensional case (by considering one component at a time) leads to the
following estimate:

Lemma 2.2. For i ∈ NN , the hierarchical surplus of an analytic function u : Γ→ V satisfies

(23)
∥∥∥∆m(i)(u)

∥∥∥
L∞(Γ,V )

≲ Λie
−σ|m(i−1)|1 .

where

σ := min
n∈1,...,N

σn, σn := log

(
2τn
|Γn|

+

√
1 +

4τ2n
|Γn|2

)
,

where the hidden constant depends on u.

2.1.2. A simplified formula for ζi,I . In the present section we highlight elementary facts on the

zeros of ∆m(j)u and the kernel of ∆m(j). These facts are combined to show that the operator
∆m(i)

(
a∇∆m(j)

)
is identically zero unless the multi-indices i, j ∈ NN are “close to each other” (see

also [32, Proposition 4.3] for partial results in this direction).
We will denote by Ri ⊂ NN the axis-aligned rectangle with opposite vertices 1 and i:

Ri :=
{
j ∈ NN : jn ≤ in ∀n ∈ 1, . . . ,N

}
.(24)

9



Theorem 2.3. Given, i, j ∈ NN , if one of the following two conditions

∃n ∈ 1, . . . , N : in < jn(25)

or

∀n ∈ 1, . . . , N : j + en < i,(26)

is satisfied, then

∆m(i)
(
a∇∆m(j)u

)
≡ 0 ∀u ∈ C0(Γ, V ).(27)

Proof. Fix y ∈ Ym(i). By (25) and the nestedness of CC nodes, it exists n ∈ 1, . . . , N such that

yn ∈ Ym(jn−1). This implies that ∆m(j)u(y) = 0, as yn is an interpolation point for both Um(jn)
n

and Um(jn−1)
n . Thus, recalling that ∇ acts on the space variable x only,

a(y)∇∆m(j)u(y) = 0 ∀y ∈ Ym(i).(28)

Next, observe that a hierarchical surplus can be written as a linear combination of Lagrange inter-
polants

∆m(i) =
∑

α∈{0,1}N
(−1)|α| Um(i−α).

By the nestedness of CC nodes, (28) implies that a∇∆m(j)u is in the kernel of each of the inter-

polants Um(i−α), α ∈ {0, 1}N \{0}, which in turn implies (27). To show that (25) also implies (27),
first observe that

a∇∆m(j)u ∈
N∑

n=1

Pm(j)−1+en = P{j}∪M{j} ⊆ PRi\{i},(29)

where the last inclusion is due to assumption (26). Next, observe that a hierarchical surplus can be

written as a difference of sparse grid interpolants: ∆m(i) = SRi
−SRi\{i}. This implies that PRi\{i}

is a subset of the kernel of ∆m(i), as both SRi
and SRi\{i} are exact on this space. Together with

(29), this concludes the proof. □

Remark 2.4. The previous theorem can be used to simplify the computation of ζi,I . Consider a

multi-index set I ⊂ NN and i ∈MI . Define

Ji,I := {j ∈ I : ∃n ∈ 1, . . . , N : j = i− en} .

Then, thanks to the previous theorem:

∆m(i) (a∇SI [u]) = ∆m(i)

a∇
∑
j∈I

∆m(j)u

 = ∆m(i)

a∇
∑

j∈Ji,I

∆m(j)u

 ,

so

(30) ζi,I =

∥∥∥∥∥∥∆m(i)

a∇
∑

j∈Ji,I

∆m(j)u

∥∥∥∥∥∥
L∞(Γ,L2(D))

.

See Figure 1 for a graphical representation.
10



1 2 3

1

2

3

4

j1

j2

i

Ji,I

Figure 1. Graphical representation of the simplified computation of ζi,I from (30). We
consider N = 2 parameters, each point in the plot corresponds to an element j = (j1, j2) ∈
N2, where on the x-axis we represent j1 and on the y-axis j2. Filled dots represent I, the
red hollow one is i ∈ MI . The blue dashed line encircles the multi-indices in Ji,I , i.e. the
only relevant ones in I for the computation of ζi,I , as explained in Remark 2.4.

2.1.3. A priori estimates for estimators and index sets.

Proposition 2.5. Given u : Γ→ V analytic, a multi-index set I ⊂ NN and i ∈MI , the pointwise
error estimator can be bounded as

ζi,I ≲ NΛ2
ie

−σ|m(i−1)|1 ,

where Λi is defined in (20).

Proof. Observe that SI [u] is analytic but not uniformly with respect to I, so one cannot apply
directly the convergence result for the hierarchical surplus. Recalling Remark 2.4, we can simplify
the expression of ζi,I as

ζi,I =
∥∥∥∆m(i) (a∇SI [u])

∥∥∥
L∞(Γ,L2(D))

=

∥∥∥∥∥∥∥∥∆
m(i)

a∇
∑

n∈1,...,N
i−en∈I

∆m(i−en)u


∥∥∥∥∥∥∥∥
L∞(Γ,L2(D))

.

Applying the stability of ∆m(i), boundedness of a, and the triangle inequality, we obtain

ζi,I ≲ Λi

∑
n∈1,...,N
i−en∈I

∥∥∥∆m(i−en)∇u
∥∥∥
L∞(Γ,L2(D))

.

Observe finally that, since u is analytic, we can apply Lemma 2.2 to obtain

ζi,I ≤ Λi

∑
n∈1,...,N
i−en∈I

Λi−ene
−σ|m(i−en−1)|1 ≲ NΛ2

ie
−σ|m(i−1)|1 .

□
11



Remark 2.6. A direct consequence of the previous proposition is the uniform boundedness of the
sequence of a-posteriori estimators (ζSC,Iℓ)ℓ. Indeed, we have the following bound independently of
of the iteration number ℓ

ζSC,Iℓ =
∑

i∈MIℓ

ζi,Iℓ ≲ N
∑

i∈MIℓ

Λie
−σ|m(i−1)|1 ≤ N

∑
i∈NN

Λie
−σ|m(i−1)|1 <∞.

Lemma 2.7. The profit maximizer iℓ ∈ NN at iteration ℓ of Algorithm 3 satisfies

Λiℓ =

N∏
n=1

⟨iℓ, en⟩ ≤
(
1 +

ℓ

N

)N

.

Moreover, there holds

#Aiℓ,Iℓ ≤
(
1 +

ℓ

N

)N

(31a)

as well as

#MIℓ ≤ N

(
1 + (ℓ− 1)

(
1 +

ℓ− 1

N

)N
)
.(31b)

Proof. First observe that due to the arithmetic-geometric inequality,

N∏
n=1

jn ≤

(∑N
n=1 jn
N

)N

=

(
|j|1
N

)N

∀j ∈ RN .

Then, it can be easily proved by induction that |iℓ|1 = N + ℓ. To prove (31), first observe that
Ai = Ri \ I, where Ri is the axis-aligned rectangle in NN as defined in (24). Thus, #Aiℓ,Iℓ ≤
#Riℓ,Iℓ = Λiℓ and due to the previous lemma we obtained the desired bound. As for the second
estimate, first observe that #MIℓ ≤ N#Iℓ. Then, an estimate on #Iℓ comes from the partition

Iℓ = {1} ∪
⋃ℓ−1

m=1Aim and the estimate on #Aiℓ . □

2.1.4. Remarks on the algorithm driven by workless profit. In this section, we point out some
elementary facts on the behavior of the algorithm when the workless profit defined in (14) is used.
Inspired by [9], we give the following definition:

Definition 2.8. Given a downward closed multi-index set I ⊂ NN , i ∈ MI is maximal inMI if
and only if

∀j ∈MI \ {i} , ∃n ∈ 1, . . . , N : in > jn.

The set of maximal points inMI is denoted by µI .

Example 2.9. If i ∈ NN and I = Ri is an axis-aligned rectangle as defined in (24), then

µI = {i+ en, n ∈ 1, . . . , N} .

Lemma 2.10. For the workless profit (14), the selected point iℓ is maximal inMIℓ

iℓ ∈ µIℓ .(32)

Therefore, Iℓ is an axis-aligned rectangle in NN , i.e.

Iℓ = Riℓ−1
.(33)

12



Proof. We prove (32) by contradiction. If iℓ is not maximal, there exists j ∈ MIℓ \ {iℓ} such that
for all n ∈ 1, . . . , N ⟨iℓ, en⟩ ≤ jn, which implies iℓ ∈ Rj . Thus, iℓ ∈ Aj,Iℓ = Rj \ Iℓ and by
definition of the workless profit, we have the contradiction Piℓ,Iℓ < Pj,Iℓ .

The second fact (33) can be proved by induction. For ℓ = 1, I1 = R1 = {1}. Assume that for
fixed ℓ ∈ N, Iℓ = Riℓ−1

. With (32) and Example 2.9, we know

iℓ ∈ µIℓ = µRiℓ−1
= {iℓ−1 + en, n ∈ 1, . . . , N} .

Thus Iℓ+1 = Iℓ ∪Aiℓ,Iℓ = Riℓ .
□

To summarize, the use of the workless profit (14) implies that, for all ℓ > 0,

• it exists a unique number n(ℓ) ∈ 1, . . . , N such that

(34) iℓ+1 = iℓ + en(ℓ).

• as a consequence, the norm of iℓ is given by:

(35) |iℓ+1|1 = |iℓ|1 + 1 = N + ℓ.

• Iℓ is a rectangle:

(36) Iℓ+1 = Riℓ .

Therefore, the sparse grid stochastic collocation interpolant is actually a full tensor product
Lagrange interpolant:

SIℓ+1
=

N⊗
n=1

Um(⟨iℓ,en⟩)
n .

• the multi-indices added at iteration ℓ are

(37) Aiℓ,Iℓ = Iℓ+1 \ Iℓ =
{
j ∈ Riℓ : jn(ℓ) = ⟨iℓ, en(ℓ)⟩

}
.

In other words, the evolution of the approximation space is determined by the sequence of integers
(n(ℓ))ℓ. This allows us to simplify the notation as follows

An,Iℓ := Aiℓ−1+en,Iℓ

Pn,Iℓ :=
∑

j∈An,Iℓ

ζj,Iℓ

Let us moreover denote the maximal n-th dimension of Iℓ as

(38) rn,ℓ := max
j∈Iℓ

jn.

See Figure 2 for a graphical representation.
The estimate for the pointwise error estimator from Proposition 2.5 can be improved as follows.

First observe that, due to (34) and (36),

Ji,Iℓ= {j ∈ Iℓ : ∃n ∈ 1, . . . , N : j = i− en} =
{
i− en(ℓ)

}
.

Thus, #Ji,Iℓ = 1 and we may reduce the dependence on N by

(39) ζi,Iℓ ≲ Λ2
ie

−σ|m(i−1)|.
13



1 2 3

1

2

3

4

j1

j2

iℓ−1 iℓ

A1,Iℓ

Figure 2. Example of approximation parameters at a generic step ℓ of the algorithm when
the workless profit (14) is used. We consider N = 2 parameters, each point in the plot
corresponds to an element j = (j1, j2) ∈ N2, where on the x-axis we represent j1 and on
the y-axis j2. Filled dots represent Iℓ, hollow ones MIℓ . The multi-index selected by the
algorithm at current step, iℓ, is in red (so in this case n(ℓ) = 1). The blue rectangle encircles
multi-indices in An(ℓ),Iℓ .

2.2. Convergence of the parametric estimator. In the following two lemmata, we prove that
Algorithm 4 driven by workless profit and profit with work respectively forces the maximum profit
over the margin to zero.

Proposition 2.11. If the workless profit (14) is used, then

lim
ℓ→∞

Pn(ℓ),Iℓ = 0.

Proof. For fixed n ∈ 1, . . . , N , we estimate each pointwise error estimator appearing in Pn,Iℓ by
(39) and the fact that for any i in An,Iℓ , in = rn,ℓ + 1.

Pn,Iℓ =
∑

j∈An,Iℓ

ζj,Iℓ ≲
∑

i∈An,Iℓ

Λ2
ie

−σ|m(i−1)|1

=
∑

i∈An,Iℓ

N∏
k=1

(
i2ke

−σ|m(ik−1)|
)

≤ (rn,ℓ + 1)2 e−
σ
2
m(rn,ℓ)

∑
i∈An,Iℓ

i2ne
−σ

2
m(in+1)

N∏
k=1,k ̸=n

(
i2ke

−σm(ik−1)
)

≤ (rn,ℓ + 1)2 e−
σ
2
m(rn,ℓ)

∑
i∈An,Iℓ

Λ2
ie

−σ
2
|m(i−1)|1 .

The last factor is uniformly bounded with respect to ℓ (but this bound depends on the number of
dimensions N) ∑

i∈An,Iℓ

Λ2
ie

−σ
2
|m(i−1)|1 ≤

∑
i∈NN

Λ2
ie

−σ
2
|m(i−1)|1 <∞.

We are left with:
Pn,Iℓ ≲ (rn,ℓ + 1)2 e−

σ
2
m(rn,ℓ).

The proof is completed by observing that limℓ→∞ rn(ℓ),l =∞. □
14



For the profit with work, we can even show convergence to zero of the profit without using the
analyticity assumption on u. This is not relevant for the problem at hand, as the analyticity follows
immediately, but may be relevant for more complicated and less regular random coefficients.

Proposition 2.12. There holds limℓ→∞ Piℓ,Iℓ = 0.

Proof. As in the proof of Proposition 2.5, but without using any analyticity of u, we obtain with (19)
that

ζi,I ≲ Λ2
iN∥∇u∥L∞(Γ,L2(D)).

We observe that the doubling rule (8) implies

(40) 2|i|1−2N ≤Wi ≤ 2|i|1−N .

Thus, the profit can be estimated as:

Piℓ,Iℓ ≲

∑
j∈Aiℓ,Iℓ

ζj,Iℓ∑
j∈Aiℓ,Iℓ

Wj
≲

#Aiℓ,IℓΛ
2
iℓ
N

Wiℓ

≤ N(1 + ℓ/N)NΛ2
iℓ
22N−|iℓ|1 .

Since 2|iℓ|1 grows much faster than Λ2
iℓ
=
∏N

n=1 i
2
ℓ,n, we conclude the proof. □

The following result shows that, if a multi-index i ∈ NN stays in the margin indefinitely, then
it’s pointwise estimator vanishes. This result is valid for both workless profit and profit with work.

Proposition 2.13. Let î ∈ NN and suppose the index remains in the margin indefinitely, i.e.,

∃ℓ0 ∈ N : ∀ℓ ≥ ℓ0, î ∈MIℓ .

Then, the pointwise error estimator corresponding to î vanishes

lim
ℓ→∞

ζ
î,Iℓ

= 0.

Proof. Let î ∈ NN such that î ∈MIℓ for all ℓ > ℓ0. Thus, î ̸= iℓ for any ℓ > ℓ0, which means that

P
î,Iℓ
≤ Piℓ,Iℓ ∀ℓ > ℓ0.

In case the profit with work (15) is used, since limℓ→∞ Piℓ,Iℓ = 0 as proved in Proposition 2.12,

we have that limℓ→∞ Pî,Iℓ = 0 (otherwise î would be selected at some point). Moreover, since∑
j∈A

î,Iℓ

Wj (i.e. the denominator in the profit P
î,Iℓ

) is eventually constant with respect to ℓ, we

have that limℓ→∞
∑

j∈A
î,Iℓ

ζ
î,Iℓ

= 0, and in particular we obtain the statement. The same holds if

the profit without work (14) is employed, as in Proposition 2.11 we have proved that also in this
case limℓ→∞ Piℓ,Iℓ = 0. □

Remark 2.14. Recall the simplified formula (30) for ζ
î,Iℓ

with J
î,Iℓ

:=
{
î− en : n ∈ 1, . . . , N

}
.

Observe that
(
J
î,Iℓ

)
ℓ
is eventually constant, i.e. it exists ℓ2 > ℓ0 (as defined in the previous

proposition) such that for all ℓ > ℓ2 J
î,Iℓ

= J
î,Iℓ2

. Thus,
(
ζ
î,Iℓ

)
ℓ
is also eventually constant.

Therefore,
(
ζ
î,Iℓ

)
ℓ
does not only vanish in the limit, but is actually eventually zero:

∀ℓ > ℓ2, ζî,Iℓ
= 0.

We can finally prove the convergence of the parameter-enrichment algorithm with a technique
inspired by [6, Proposition 10].
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Theorem 2.15 (Convergence of the parameter-enrichment algorithm). The adaptive stochastic
collocation Algorithm 4 driven by either workless profit or profit with work, leads to a vanishing
sequence of a-posteriori error estimators, thus also leading to a convergent sequence of discrete
solutions

lim
ℓ→∞

ζSC,Il = 0 = lim
ℓ→∞

∥u− SIℓ [u]∥L∞(Γ,V )

Proof. The a-posteriori error estimator at step ℓ ∈ N can be written as

ζSC,Iℓ =
∑
i∈NN

ζi,Iℓ1MIℓ
(i),

where 1MIℓ
is the indicator function of the marginMIℓ . In order to prove that the sequence vanishes

by dominated convergence, it is sufficient to prove that (i) for any i ∈ NN , limℓ→∞ ζi,Iℓ1MIℓ
= 0

and (ii) that the sequence (ζSC,Iℓ)ℓ is bounded. The uniform boundedness (ii) was proved in
Remark 2.6. As for (i), observe that at least one of the following cases applies:

• i is eventually added to Iℓ, thus 1MIℓ
(i) is eventually zero;

• i is never added to the margin (for all ℓ ∈ N, i ∈ NN \MIℓ), thus ζi,Iℓ is constantly zero;
• it exists ℓ̄ ∈ N such that for any ℓ ≥ ℓ̄, i ∈ MIℓ . In this case, due to Proposition 2.13,
limℓ→∞ ζi,Iℓ = 0.

This concludes the proof. □

2.3. Convergence of the parametric error. In the present section we denote by L(L∞(Γ, V ))
the space of linear bounded operators T : L∞(Γ, V ) → L∞(Γ, V ). It is well known that this is a
Banach space when equipped with the usual operator norm

∥T∥L(L∞(Γ,V )) := sup
u∈L∞(Γ,V ),u ̸=0

∥Tu∥L∞(Γ,V )

∥u∥L∞(Γ,V )

.

We have the following monotonicity property of the approximation error of SI [·] with respect to I:

Lemma 2.16. Let u ∈ C0(Γ, V ) and I, J ⊂ NN downward-closed multi-index sets such that J ⊂ I.
Then

∥u− SI [u]∥L∞(Γ,V ) ≤
(
1 + ∥SI∥L(L∞(Γ,V ))

)
∥u− SJ [u]∥L∞(Γ,V ).

Proof. With the identity operator 1 on C0(Γ, V ), observe that

u− SI [u] = (1− SI)u = (1− SI) (1− SJ)u

since J ⊂ I implies SI [SJ [u]] = SJ [u]. The triangle inequality concludes the proof. □

In the present section we provide error estimates for SIℓ with respect to the number of iterations
ℓ. We consider both the possible definitions of profit (14) and (15).

Remark 2.17. The quantity ∥SIℓ∥L(L∞(Γ,V )) from Lemma 2.16 satisfies

• Workless profit: Iℓ = Riℓ−1
, i.e. SIℓ is actually a tensor-product Lagrange interpolant (see

Section 2.1.4). Therefore, we can estimate

(41) ∥SIℓ∥L(L∞(Γ,V )) =

∥∥∥∥∥
N⊗

n=1

Um(⟨iℓ−1,en⟩)
n

∥∥∥∥∥
L(L∞(Γ,V ))

≤
N∏

n=1

⟨iℓ−1, en⟩ ≤
(
1 +

ℓ− 1

N

)N

,

where in the first inequality we used the stability bound for the Lagrange interpolant (18)
and Lemma 2.7 for the second inequality.
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• Profit with work: Partitioning Iℓ with the sequence (Aim,Im)
ℓ−1
m=1 and using Lemma 2.7.

∥SIℓ∥L(L∞(Γ,V )) ≤
∑
i∈Iℓ

∥∥∥∆m(i)
∥∥∥
L(L∞(Γ,V ))

≤
ℓ−1∑
m=1

#Aim,ImΛim

≤ (ℓ− 1)

(
1 +

ℓ− 1

N

)2N

.

(42)

We finally prove the parametric error estimates, first with workless profit, then with profit with
work.

Theorem 2.18. Consider Algorithm 4 with workless profit defined in (14). Denote by Iℓ the
downward-closed multi-index sets chosen by the algorithm at step ℓ > 0 and by SIℓ [u] the cor-
responding sparse grid stochastic collocation approximation of the analytic function u : Γ → V .
Then,

(43) ∥u− SIℓ [u]∥L∞(Γ,V ) ≲

(
1 +

(
1 +

ℓ− 1

N

)N
)
Nℓ2e−

σ
2
m(1+ ℓ

N
) ∀ℓ > 0.

Proof. Fix ℓ > 0. Recall the definition of rn,ℓ from (38) and consider the direction n̄ ∈ {1, . . . , N}
which maximizes rn,ℓ. With n(ℓ) from (34), define

ℓ′ := max
{
ℓ′ ∈ 1, . . . , ℓ : n(ℓ′) = n̄

}
and observe that with each iteration, at least one side of the axis aligned rectangle Iℓ is increased
by one, i.e.,

(44) rn(ℓ′),ℓ′ = rn̄,ℓ ≥ 1 +
ℓ

N
.

Applying estimate (41) form the previous remark, we can bound

∥u− SIℓ [u]∥L∞(Γ,V ) ≤

(
1 +

(
1 +

ℓ− 1

N

)N
)∥∥u− SIℓ′ [u]

∥∥
L∞(Γ,V )

.

Now, apply the reliability of the error estimator proved in [32, Proposition 4.3] to obtain∥∥u− SIℓ′ [u]
∥∥
L∞(Γ,V )

≲
∑

i∈MIℓ′

ζi,Iℓ′ .

Recalling the definition of An,Iℓ′ and Pn,Iℓ′ for n ∈ 1, . . . , N given in Section 2.1.4, we have∑
i∈MIℓ′

ζi,Iℓ′ =

N∑
n=1

∑
i∈An,Iℓ′

ζi,Iℓ′ =

N∑
n=1

Pn,Iℓ′ ≤ NPn(ℓ′),Iℓ′ .

The profit Pn(ℓ′),Iℓ′ can now be bounded as a function of rn(ℓ′),ℓ′ as we did in Proposition 2.11

Pn(ℓ′),Iℓ′ =
∑

j∈An(ℓ′),Iℓ′

ζj,Iℓ′ ≤
∑

j∈An(ℓ′),Iℓ′

(
N∏
k=1

jk

)2

e−
σ
2
|m(j−1)| ≲ r2n(ℓ′),ℓ′e

−σ
2
m(rn(ℓ′),ℓ′ ),

where in the first inequality we have applied the estimate (39) on ζj,Iℓ′ and in the second we have

exploited the fact that, for j ∈ An(ℓ′),Iℓ′
, jn(ℓ′) = rn(ℓ′),ℓ′ +1. Recalling that 1+ ℓ

N ≤ rn(ℓ′),ℓ′ ≤ ℓ+1,
we obtain

Pn(ℓ′),Iℓ′ ≲ ℓ2e−
σ
2
m(1+ ℓ

N
).

□
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Let us now prove the analogous result for the algorithm driven by profit with work.

Theorem 2.19. Consider Algorithm 4 with profit with work defined in (15). Denote by Iℓ the
downward-closed multi-index sets chosen by the algorithm at step ℓ > 0 and by SIℓ [u] the cor-
responding sparse grid stochastic collocation approximation of the analytic function u : Γ → V .
Then,

(45) ∥u− SIℓ [u]∥L∞(Γ,V ) ≲ ℓ5
(

ℓ

N

)4N

2ℓ(1−
1
N )e

−σ
2
m

(
ℓ

1
N

)
∀ℓ > 0.

Proof. For brevity, we write ζi, Ai and Pi instead of ζi,I , Ai,I and Pi,I respectively. Fix ℓ > 0
and consider r̄ := maxi∈Iℓ |i|ℓ∞ and n̄ ∈ 1, . . . , N such that, for some i ∈ Iℓ, in̄ = r̄. Observe that
#Iℓ ≳ ℓ and hence

r̄ ≥ ℓ
1
N .

Consider the last step ℓ′ in which Iℓ has been extended in direction n̄, i.e.,

(46) ℓ′ := max
{
ℓ′ ∈ 1, . . . , ℓ : ⟨iℓ′ , en̄⟩ = r̄ and iℓ′ − en̄ ∈ Iℓ′

}
.

Applying estimate (42) from Remark 2.17, we can bound

(47) ∥u− SIℓ [u]∥L∞(Γ,V ) ≤

(
1 + (ℓ− 1)

(
1 +

ℓ− 1

N

)2N
)∥∥u− SIℓ′ [u]

∥∥
L∞(Γ,V )

.

In [32, Proposition 4.3], the reliability of the error estimator is proved∥∥u− SIℓ′ [u]
∥∥
L∞(Γ,V )

≲
∑

i∈MIℓ′

ζi.

Recalling the definition of µIℓ′ , the set of maximal elements in MIℓ′ (Definition 2.8), the margin
can be represented (but in general not partitioned) as

MIℓ′ =
⋃

j∈µIℓ′

Aj .(48)

Thus, we can estimate∑
i∈MIℓ′

ζi ≤
∑

j∈µIℓ′

∑
i∈Aj

ζi =
∑

j∈µIℓ′

∑
i∈Aj

ζi∑
i∈Aj

Wi

∑
i∈Aj

Wi =
∑

j∈µIℓ′

Pj
∑
i∈Aj

Wi

≤Piℓ′
∑

j∈µIℓ′

∑
i∈Aj

Wi =

 ∑
i∈Aiℓ′

ζi

 1∑
i∈Aiℓ′

Wi

 ∑
j∈µIℓ′

∑
i∈Aj

Wi

 ,

where in the second inequality we have used the fact that Piℓ′ ≥ Pj for any j ∈MIℓ′ . Let us now
estimate each of the three factors separately.

•
∑

i∈Aiℓ′
ζi: As in the proof of Theorem 2.18 (using the estimate from Proposition 2.5 instead

of the one in (39)) we obtain with ℓ
1
N ≤ r̄ ≤ ℓ+ 1 that

(49)
∑

i∈Aiℓ′

ζi ≲ Nℓ2e
−σ

2
m

(
ℓ

1
N

)
.

•
∑

i∈Aiℓ′
Wi: There holds

(50)
∑

i∈Aiℓ′

Wi ≥Wiℓ′ ≥ m(⟨iℓ′ , en̄⟩)−m(⟨iℓ′ , en̄⟩ − 1) ≥ 2r̄−2 ≥ 2
ℓ
N
−2
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•
∑

j∈µIℓ′

∑
i∈Aj

Wi: We observe∑
j∈µIℓ′

∑
i∈Aj

Wi =
∑

i∈MIℓ′

#
{
j ∈ µIℓ′ : i ∈ Aj

}
Wi.

Thus, being #
{
j ∈ µIℓ′ : i ∈ Aj

}
≤ #MIℓ′ , we can estimate

(51)
∑

j∈µIℓ′

∑
i∈Aj

Wi ≤ #MIℓ′

∑
i∈MIℓ′

Wi ≤
(
#MIℓ′

)2
max

i∈MIℓ′
Wi.

An estimate for #MIℓ′ is given in (31). For the second factor, use the bound on Wi from
(40) and the fact that for any i ∈MIℓ , |i|1 ≤ N + ℓ to obtain:

(52)
∑

j∈µIℓ′

∑
i∈Aj

Wi ≤

(
N +N(ℓ− 1)

(
1 +

ℓ− 1

N

)N
)2

2ℓ.

Finally, the statement of the theorem is obtained combining (49), (50) and (52). □

Remark 2.20. We note that the convergence rates in Theorems 2.18–2.19 above compare the error
to the number of adaptive steps ℓ. This is hard to compare to classical a priori results which bound
the error in terms of the number of collocation points (see, e.g., [39, 2]). Due to the adaptive nature
of the algorithm we have no knowledge about the shape of Iℓ and hence the number of collocation
points #HIℓ. Additionally, we do not assume any a priori information about the anisotropy of the

solution. Hence, the term ℓ1/N is the worst-case for a fully isotropic solution. We point out that
the observed rate of convergence is much better (see Section 4) and further research is required to
explain the performance of the adaptive algorithm.

3. Convergence of the fully discrete algorithm

In order to prove the convergence of Algorithm 1, it is sufficient to prove that

• in Algorithm 2 (the finite element refinement sub-routine) the finite element error eventually
falls below the tolerance prescribed in Line 3 (Alg. 2) and iteratively updated in Line 12
(Alg. 2) (proved in Section 3.1)
• that the parametric estimator ζSC,Iℓ in Algorithm 1 vanishes (proved in Section 3.2).

Indeed, if this is the case, ηFE,Iℓ will vanish with ζSC,Iℓ because of the definition of the finite element
refinement tolerance and the reliability of the estimator will ensure the convergence of the discrete
solution to the analytic one.

In the present section, we will write ζSC,I(·), ζi,I(·) to denote the dependence on the function
explicitly. The same will be done for the finite element estimator ηFE,I(·). For instance, the
parametric estimator from Section 1.3 (defined in (10)) can be written as ζSC,I(U), if we denote
by U the current discrete finite element solution. In the previous section, in which we assumed to
be able to sample the analytic solution, we were dealing with ζSC,I(u).

The following lemma will be used in the next sections.

Lemma 3.1. Given a downward-closed multi-index set I ⊂ NN , there holds

|ζSC,I(u)− ζSC,I(U)| ≲

 ∑
i∈MI

Λi

ηFE,I(U).
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Proof. The stability bound (19) for the hierarchical surplus operator implies

|ζSC,I(u)− ζSC,I(U)| ≤
∑
i∈MI

|ζi,I(u)− ζi,I(U)|

≤
∑
i∈MI

∥∥∥∆m(i) (a∇SI [u− U ])
∥∥∥
L∞(Γ,L2(D))

≲

 ∑
i∈MI

Λi

 ∥∇SI [u− U ]∥L∞(Γ,L2(D)).

Now we only need to bound the last factor with the finite element estimator:

∥∇SI [u− U ]∥L∞(Γ,L2(D)) ≤
∑
y∈HI

∥(u(y)− Uy)Ly∥L∞(Γ,V )

≤
∑
y∈HI

∥∇ (u(y)− Uy)∥L2(D)∥Ly∥L∞(Γ).

The reliability of the residual-based error estimator in each collocation point y concludes the
proof. □

3.1. Convergence under h-refinement. The stochastic collocation finite element algorithm (Al-
gorithm 1) delegates to Algorithm 2 the task of refining the finite element solutions corresponding
to the collocation points until the finite element a-posteriori estimator defined in (11) falls below a
given tolerance. Recall that Algorithm 2 is given a multi-index set I, or equivalently a sparse grid
HI consisting of Nc collocation points that will not change during its execution. Hence, we will
drop the index I in the following. Moreover, the index ℓ ∈ N will denote the current iteration of
the adaptive loop starting at Line 4 (Alg. 2) (so Uℓ,y and ηℓ,y will denote respectively the finite
element solution and finite element estimator on the collocation point y ∈ H at iteration ℓ and
with respect to the mesh Tℓ,y).

From the theory of the classical h-adaptive finite element algorithm, we have the following
contraction property (see, e.g., [8, 43, 7]) for all y ∈ H:

(53)
∑

T∈Tℓ+1,y\Tℓ,y

η2ℓ+1,y,T ≤ q
∑

T∈Tℓ,y\Tℓ+1,y

η2ℓ,y,T + C∥Uℓ+1,y − Uℓ,y∥2V

as well as ( ∑
T∈Tℓ+1,y∩Tℓ,y

η2ℓ+1,y,T

)1/2
≤
( ∑

T∈Tℓ,y∩Tℓ+1,y

η2ℓ,y,T

)1/2
+ C1/2∥Uℓ+1,y − Uℓ,y∥V(54)

for 0 < q < 1 and C > 0 independent of ℓ but depending on the shape-regularity of the mesh and
the regularity assumptions on the coefficient a(y, ·) on Tinit. Since we use newest-vertex-bisection
for mesh refinement, the shape regularity depends only on Tinit.

As in the deterministic setting, Dörfler marking together with (53)–(54) can be used to prove a
contraction property of the estimator (see also [6] for a similar argument with a slightly different
marking strategy).

Proposition 3.2. Given an arbitrary downward closed index set I ⊆ NN, Algorithm 2 satisfies∑
y∈H

η2ℓ+k,y ≤ Clinq
k
lin

∑
y∈H

η2ℓ,y(55)

20



for all ℓ, k ∈ N and some uniform constants 0 < qlin < 1, Clin > 0. In particular, we have:

lim
ℓ→∞

∥SI [u]− SI [Uℓ]∥L∞(Γ,V ) = 0 = lim
ℓ→∞

ηFE,I(Uℓ).

Proof. We show with (53)–(54) that all δ > 0 satisfy (recall the definition of
⊔

from Line 5 (Alg. 2))∑
y∈H

η2ℓ+1,y =
∑

(y,Ty)∈
⊔

y∈H Tℓ+1,y\Tℓ,y

η2ℓ+1,y,Ty
+

∑
(y,Ty)∈

⊔
y∈H Tℓ+1,y∩Tℓ,y

η2ℓ+1,y,Ty

≤ q
∑

(y,Ty)∈
⊔

y∈H Tℓ,y\Tℓ+1,y

η2ℓ,y,Ty
+ (1 + δ)

∑
(y,Ty)∈

⊔
y∈H Tℓ,y∩Tℓ+1,y

η2ℓ,y,Ty

+ C(2 + δ−1)
∑
y∈H
∥Uℓ+1,y − Uℓ,y∥2V

≤ (q − 1)
∑

(y,Ty)∈
⊔

y∈H Tℓ,y\Tℓ+1,y

η2ℓ,y,Ty
+ (1 + δ)

∑
(y,Ty)∈

⊔
y∈H Tℓ,y

η2ℓ+1,y,Ty

+ C(2 + δ−1)
∑
y∈H
∥Uℓ+1,y − Uℓ,y∥2V .

The Dörfler marking from Algorithm 2 ensures K ⊆
⊔

y∈H Tℓ,y \ Tℓ+1,y and hence

(q − 1)
∑

(y,Ty)∈
⊔

y∈H Tℓ,y\Tℓ+1,y

η2ℓ,y,Ty
≤ θ(q − 1)

∑
(y,Ty)∈

⊔
y∈H Tℓ,y

η2ℓ,y,Ty
.

Altogether, we obtain for κ := 1 + δ − θ(1− q) and C̃ := C(2 + δ−1) that∑
y∈H

η2ℓ+1,y ≤ κ
∑
y∈H

η2ℓ,y + C̃
∑
y∈H
∥Uℓ+1,y − Uℓ,y∥2V .

With the Galerkin orthogonality∑
y∈H

∥∥∥a(y)1/2∇(Uℓ+1,y − Uℓ,y)
∥∥∥2
L2(D)

=
∑
y∈H

(∥∥∥a(y)1/2∇(u(y)− Uℓ,y)
∥∥∥2
L2(D)

−
∥∥∥a(y)1/2∇(u(y)− Uℓ+1,y)

∥∥∥2
L2(D)

)
we may follow [7, Section 4] verbatim in order to prove (55). Since #H is fixed, we have

∑
y∈H η2ℓ,y ≃

ηFE,I(Uℓ)
2 and reliability proves limℓ→∞ ηFE,I(Uℓ) = limℓ→∞ ∥SI [u]− SI [Uℓ]∥L∞(Γ,V ) = 0. This

concludes the statement. □

Remark 3.3. The previous proposition implies that Algorithm 2 terminates. In particular, the
algorithm will eventually satisfy the condition ηFE,I(Uℓ) < Tolℓ, where Tolℓ := α 1∑

i∈MI
Λi
ζSC,I(Uℓ).

Indeed, due to Lemma 3.1 we have that, as (ηFE,Iℓ(Uℓ))ℓ vanishes, ζSC,I(Uℓ) converges to ζSC,I(u) ≥
ϵ > 0, therefore limℓ→∞Tolℓ = α 1∑

i∈MI
Λi
ζSC,I(u) > 0. Note that the convergence proof uses an

ℓ2-type estimator instead of an ℓ1-type as in ηFE,I . In this regard, the ℓ2-type might seem more
natural and we refer to Section 3.3 for further discussion.

Theorem 3.4. Given an arbitrary downward closed index set I ⊆ NN, Algorithm 2 converges with
the optimal rate in the following sense: Let T denote the set of all meshes which can be obtained
from Tinit by iterated newest-vertex-bisection with mesh closure. Let s > 0 such that

sup
N∈N

inf
Ty∈T∑

y∈H #Ty≤N

(∑
y∈H

∥∥u(y)− UTy
∥∥2
V
+
∥∥hTy(1−ΠTy)f

∥∥2
L2(D)

)1/2
N s <∞,(56)
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where hT denotes the local mesh-size function and ΠT is the L2(D)-orthogonal projection onto
T -elementwise constant functions. Then, there holds

sup
ℓ∈N
∥SI [u]− SI [Uℓ]∥L∞(Γ,V )

(∑
y∈H

#Tℓ,y
)s

<∞.

Proof. First note that standard upper/lower bounds for the residual error estimator together with

the regularity assumptions on a(y, ·) show ηy ≃
√∥∥u(y)− UTy

∥∥2
V
+
∥∥hTy(1−ΠTy)f

∥∥2
L2(D)

and

hence (56) is equivalent to

sup
N∈N

inf
Ty∈T∑

y∈H #Ty≤N

(∑
y∈H

η2y

)1/2
N s <∞.

With the error norm |||u − Uℓ||| :=
√∑

y∈H
∥∥u(y)− UTℓ,y

∥∥2
V

and (53)–(54), the estimator ηFE,I
satisfies (A1) and (A2) from [7, Section 3]. From the classical theory of h-adaptivity [8], we
immediately obtain discrete reliability (A3) in the sense

|||Uℓ+k − Uℓ|||2 =
∑
y∈H
∥Uℓ+k,y − Uℓ,y∥2V ≤ Cdrel

∑
y∈H

∑
T∈ω(Tℓ,y\Tℓ+k,y)

η2ℓ,y,T ,

where ω(·) denotes the set of elements with non-empty intersection with (·). With these ingredients
and the linear convergence from Proposition 3.2, [7, Proposition 4.12 & Proposition 4.15] show
optimal convergence of the error estimator

sup
ℓ∈N

√∑
y∈H

η2ℓ,y

(∑
y∈H

#Tℓ,y
)s

<∞.

With constants depending only on the size of I, the quantity
√∑

y∈H η2ℓ,y is equivalent to ηFE,I

and hence reliability concludes the proof. □

3.2. Proof of convergence of the fully discrete algorithm. The tolerance for finite element
refinement was defined in Algorithm 2 as:

(57) Tol = Tol(I, ζi,I(U), α) := α
1∑

i∈MI
Λi

ζSC,I(U).

where α ∈ (0, 1), Λi was defined in (20) and ζSC,I(U) is the parametric a-posteriori error estimator.

This choice is motivated by the following estimate: For fixed downward closed I ⊂ NN , Lemma 3.1
shows

ζSC,I(U) ≤ ζSC,I(u) +

 ∑
i∈MI

Λi

ηFE,I(U) ≤ ζSC,I(u) + αζSC,I(U),

and hence

(58) ζSC,I(U) ≤ 1

1− α
ζSC,I(u).

In the context of the adaptive algorithm, this implies that (ζSC,Iℓ(Uℓ))ℓ is uniformly bounded since
(ζSC,Iℓ(u))ℓ is. This last fact was proved in Remark 2.6 using the estimate on the pointwise error
estimator from Proposition 2.5.

Lemma 3.5. Algorithm 1 with either workless profit (and 0 < α < 1 sufficiently small) or profit
with work (and arbitrary 0 < α < 1) and the tolerance (57) satisfies limℓ→∞ Piℓ,Iℓ = 0.
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Proof. We consider the two definitions of profit separately:

Profit with work: Pi,I :=

∑
j∈Ai,I

ζj,I(U)∑
j∈Ai,I

Wj
.

The uniform boundedness of the parametric a-posteriori error estimator, together with the fact
that the work over Aiℓ,Iℓ diverges, gives

Piℓ,Iℓ ≤
ζSC,Iℓ(Uℓ)∑
j∈Aiℓ,Iℓ

Wj
≲

1∑
j∈Aiℓ,Iℓ

Wj
→ 0.

Workless profit: Pi,I :=
∑

j∈Ai,I
ζj,I(U). We recall from (48) that, for the profit-maximizer

iℓ ∈MIℓ , Piℓ,Iℓ ≥
1
N ζSC,Iℓ(U). Thus, Lemma 3.1 shows

Piℓ,Iℓ ≤
∑

j∈Aiℓ,Iℓ

ζj,Iℓ(u) + α

∑
j∈Aiℓ,Iℓ

Λj∑
j∈MIℓ

Λj
ζSC,Iℓ(Uℓ)

≤
∑

j∈Aiℓ,Iℓ

ζj,Iℓ(u) + α

∑
j∈Aiℓ,Iℓ

Λj∑
j∈MIℓ

Λj
NPiℓ,Iℓ

≤
∑

j∈Aiℓ,Iℓ

ζj,Iℓ(u) + αNPiℓ,Iℓ ,

so

Piℓ,I ≤
1

1− αN

∑
j∈Aiℓ,Iℓ

ζj,Iℓ(u)→ 0 as l→∞.

Observe that this introduces the constraint on α with respect to the number of dimensions: α <
N−1. This constraint can be improved by replacing the crude estimate∑

j∈Aiℓ,Iℓ
Λj∑

j∈MIℓ
Λj
≤ 1,

with the better bound

α ≤

(
maxn∈1,...,N

∑
j∈Aiℓ−1+en,Iℓ

Λj∑
j∈MIℓ

Λj
N

)−1

.

This concludes the proof. □

We can finally prove that the error estimator vanishes with a technique similar to that used in
Theorem 2.15 for the parametric algorithm.

Theorem 3.6. Algorithm 1 with either workless profit (and 0 < α < 1 sufficiently small) or profit
with work (and arbitrary 0 < α < 1) and the tolerance (57) satisfies the following: The sequence of
parametric a-posteriori error estimators (ζSC,Iℓ(Uℓ))ℓ vanishes

lim
ℓ→∞

ζSC,Iℓ(Uℓ) = 0.

Thus, also the finite element error estimator vanishes

lim
ℓ→∞

ηFE,Iℓ(Uℓ) = 0,

and the reliability of the a-posteriori error estimator implies error convergence

lim
ℓ→∞

∥u− SIℓ [Uℓ]∥L∞(Γ,V ) = 0.
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Proof. The a-posteriori error estimator can be expressed as

ζSC,Iℓ(Uℓ) =
∑
i∈NN

ζi,Iℓ(Uℓ)1MIℓ
(i).

Since the sequence (ζSC,Iℓ(Uℓ))ℓ is uniformly bounded (58), it is sufficient to prove that
(
ζi,Iℓ(Uℓ)1MIℓ

)
ℓ

vanishes for any fixed i ∈ NN . We can distinguish three cases:

• if i is eventually added to Iℓ, then 1MIℓ
(i) is eventually zero;

• if i is never added to the marginMIℓ , then ζi,Iℓ(Uℓ) is constantly zero;
• finally, if it exists ℓ̄ ∈ N such that for all ℓ > ℓ̄, i ∈MIℓ , then limℓ→∞ ζi,Iℓ(Uℓ) = 0. Indeed,
because of Lemma 3.5, limℓ→∞ Pi,Iℓ = 0 (for both workless profit and profit with work),
thus (ζi,Iℓ(Uℓ))ℓ vanishes as in Proposition 2.13.

This concludes the proof. □

3.3. Other versions of the finite element estimator. In the previous section we followed [32]
to derive the estimator via

SI

[∫
D
fv − a∇SI [U ] · ∇v

]
=
∑
y∈HI

[∫
D
fv − a(y)∇SI [U ](y) · ∇v

]
Ly

≤ C
∑
y∈HI

ηy|Ly|∥∇v∥L2(D).

Choosing v = u− SI [U ] and taking the L∞(Γ) norm leads to the estimator we used above, i.e.,∥∥∥∥∥∥
∑
y∈HI

ηy|Ly|

∥∥∥∥∥∥
L∞(Γ)

≤
∑
y∈HI

ηy∥Ly∥L∞(Γ) = ηFE,I(U).

Using the Hölder estimates with other combinations of (p, q) ∈ {(2, 2), (∞, 1)}, we obtain∥∥∥∥∥∥
∑
y∈HI

ηy|Ly|

∥∥∥∥∥∥
L∞(Γ)

≤

∥∥∥∥∥∥∥
∑

y∈HI

η2y

 1
2
∑

y∈HI

|Ly|2
 1

2

∥∥∥∥∥∥∥
L∞(Γ)

= ηp,IΛq,I ,

where

ηp,I :=


(∑

y∈HI
η2y

) 1
2

p = 2,

maxy∈HI
ηy p =∞,

and Λq,I :=


∥∥∥(∑y∈HI

|Ly|2
)∥∥∥ 1

2

L∞(Γ)
q = 2,∥∥∥∑y∈HI

|Ly|
∥∥∥
L∞(Γ)

q = 1.

The perturbation result from Lemma 3.1 can be analogously modified to obtain:

|ζSC,I(u)− ζSC,I(U)| ≲

 ∑
i∈MI

Λi

 ηp,IΛq,I

From these results, the sufficient condition in (57) for convergence becomes respectively

ηp,I(U) ≤ α

Λq,I

∑
i∈MI

Λi

−1

ζSC,I(U).

With these ingredients, all the other results of the previous sections hold for the variants of the
finite element estimator discussed above.
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3.4. Convergence of a single mesh version of the fully discrete algorithm. We also consider
SCFE with the same adaptively refined mesh in all collocation points. The idea is that, if the
set of singularities of the solution u is small, one single adaptive mesh can resolve all of them
simultaneously and thus substantially reduce the computational effort. We employ the following
estimator from [32, Remark 4.4] for the finite element part

ηFE,I(U) :=

(∑
T∈T

η2T (U)

)1/2

, ηT (U) := ∥ηT ( · ;U)∥L∞(Γ),

η2T (y;U) := h2T ∥SI [f +∇ · (a∇U)] (y)∥2L2(T ) +
∑
e⊂∂T

hT
∥∥SI

[
[a∇U · ne]ne

]
(y)
∥∥2
L2(e)

.

Since we use a single mesh for all collocation points y ∈ HI , we replace Ty in Algorithm 2 by T .
We change the Dörfler marking in Line 5 (Alg. 2) to: Find minimal K ⊆ T such that∑

T∈K
ηT (U)2 ≥ θη2FE,I .

Moreover, we replace the refinement loop in Line 6 (Alg. 2) by a single refinement of the mesh T
with marked elements K.

Due to the fact that U : Γ → S10 (T ) admits a holomorphic extension to Σ(Γ, τ ) just as does
u (the same arguments work also for the discrete approximation), the convergence analysis of the
parametric enrichment algorithm remains unchanged (Section 2), we now have to show convergence
of the adaptive finite element subroutine. With this, we may analogously employ the results of
Section 3.2 to obtain convergence of the full algorithm. Note that we can not directly transfer the
proof of Proposition 3.2 as the definition of ηFE,I in this section mixes L2-norms and L∞-norms.

In this setting, the multi-index set I ⊂ NN is fixed. We denote by Tℓ the finite element mesh at
step ℓ > 0 (the same for every collocation point). Uℓ represents the discrete solution at step ℓ and
Uℓ,y ∈ S10 (Tℓ) its value on a collocation point y ∈ HI . We simplify the notation for the estimator

as ηℓ := ηFE,I(Uℓ), ηℓ(U) :=
(∑

T∈Tℓ ηT (U)2
)1/2

.

We first give a perturbation estimate localized on one element T of a mesh T , analogously to [8,
Proposition 3.3].

Lemma 3.7. Consider a shape-regular mesh T obtained by NVB from a mesh Tinit. There holds
for U,W ∈ C0(Γ,S10 (T )) that

ηT (U) ≤ ηT (W ) + C∥SI∥L(L∞(Γ,L2(D)))max
y∈H
∥∇(U(y)−W (y))∥L2(ω(T )) ∀T ∈ T ,(59)

where ω(T ) is the union of the elements sharing an edge with T , C > 0 depends only on a and Tinit.

Proof. For any fixed y ∈ Γ, the linearity of SI and the triangle inequality yield

ηT (y;U) ≤ ηT (y;W ) + hT ∥SI [∇ · (a∇(U −W ))] (y)∥L2(T )

+h
1/2
T

∑
e⊂∂T

∥SI [[a∇(U −W ) · ne]ne ] (y)∥L2(e).

With the operator norm of SI , we obtain

∥SI [∇ · (a∇(U −W ))] (y)∥L2(T ) ≤ ∥SI∥L(L∞(Γ,L2(D)))max
y∈H
∥∇a(y)∥L∞(T ))∥∇(U −W )(y)∥L2(T ).
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Analogously, for the jump terms [a∇(U −W ) · ne]ne with e ⊂ ∂T , we obtain, following the same
steps as in [8, Proposition 3.3],∑
e⊂∂T

∥SI [[a∇(U −W ) · ne]ne ] (y)∥L2(e) ≲ ∥SI∥L(L∞(Γ,L2(D)))max
y∈H
∥a(y)∥L∞(ω(T )))∥∇(U −W )(y)∥L2(ω(T )).

This concludes the proof. □

Proposition 3.8. The sequence of finite element estimators ηℓ obtained from the single mesh
adaptive algorithm satisfies

lim
ℓ→∞

ηℓ = 0.

Proof. With the perturbation estimate from Lemma 3.7, we may follow [7, Section 4.3] to show
estimator reduction

η2ℓ+1 ≤ qη2ℓ + C2∥SI∥2
∑
T∈Tℓ

max
y∈H
∥∇(Uℓ+1(y)− Uℓ(y))∥2L2(ω(T ))(60)

for some universal 0 < q < 1 and all ℓ ∈ N.
To show that the second term in (60) vanishes, we first observe that (Uℓ(y))ℓ∈N converges in V

for all y ∈ H. Indeed, for any fixed y ∈ H, the nestedness of the finite element spaces Vℓ guarantees
the existence of U∞(y) ∈

⋃
ℓ Vℓ ⊂ V such that limℓ→∞ ∥U∞(y)− Uℓ(y)∥V = 0 by Céa’s lemma (see,

e.g., [7, Section 3.6]). This implies that

lim
ℓ→∞

∥∇(Uℓ+1 − Uℓ)(y)∥L2(D) = 0(61)

for all y ∈ H. Since #H is fixed in the finite element refinement loop of the adaptive algorithm,
we have ∑

T∈Tℓ

max
y∈H
∥∇(Uℓ+1(y)− Uℓ(y))∥2L2(ω(T )) ≤

∑
T∈Tℓ

∑
y∈H
∥∇(Uℓ+1(y)− Uℓ(y))∥2L2(ω(T ))

≲
∑
y∈H
∥∇(Uℓ+1(y)− Uℓ(y))∥2L2(D) → 0

as ℓ→∞. Passing to the limit superior in (60) shows 0 ≤ lim supℓ→∞ ηℓ+1 ≤ q lim supℓ→∞ ηℓ and
thus concludes limℓ→∞ ηℓ = 0. □

Altogether, we obtain the convergence result analogously to Theorem 3.6.

Theorem 3.9. The single mesh SCFE algorithm discussed in this section satisfies the following:
The sequence of parametric a-posteriori error estimators (ζSC,Iℓ(Uℓ))ℓ vanishes

lim
ℓ→∞

ζSC,Iℓ(Uℓ) = 0.

Thus, also the finite element error estimator vanishes

lim
ℓ→∞

ηFE,Iℓ(Uℓ) = 0,

and the reliability of the a-posteriori error estimator implies error convergence

lim
ℓ→∞

∥u− SIℓ [Uℓ]∥L∞(Γ,V ) = 0.
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3.5. Cost of the stochastic collocation algorithms. Under the assumption that the pointwise
estimators ζi,I(U) and ηy,T (U) can be computed from the discrete solution in O(1), each step
of the adaptive loop (all algorithms) is linear with respect to the number of degrees of freedom
of the current sparse grid and spatial meshes. Indeed, a properly preconditioned iterative solver
computes U in linear cost (depending on amin and amax). The Dörfler marking in Algorithm 2
requires sorting when done in a naive way, but can be improved to linear cost by binning [43] or
by a clever variation of the quick-select algorithm [41]. Finally, the refinement of the finite element
meshes Ty via newest-vertex-bisection can be done in linear cost [44].

As discussed in Section 4 below, the computation of the L∞(Γ) and L2(D)-norms for ζi,I is done
via a random sample/Monte-Carlo procedure. This results in constant cost O(1) and the numerical
experiments below show that the approximation error is negligible. A precise convergence analysis
of this procedure would be interesting but is beyond the scope of this work. Each random sample
requires the evaluation of the sparse grid interpolant. Theoretically, the cost of the evaluation of the
sparse grid interpolation operator is linear in terms of collocation points, after a quadratic set-up
cost. Practically, however, the cost of computing the discrete solutions is expected to dominate
significantly.

4. Numerical experiments

The Matlab implementation of Algorithm 1 used to produce the numerical results presented in
this section is based on two Matlab libraries. For sparse grid algorithms, the Sparse Grids Kit
[3] was used. The implementation of the adaptive P1 finite element methods is from the p1afem
Matlab package [26], which uses Matlab’s direct solver for sparse matrices. For further details
about parameters and algorithm used within these libraries, the reader is referred to the respective
documentations. The parts of the algorithm that deal with parameter enrichment (e.g. Algorithm
3) were implemented following the guidelines from [32].

In order to compute the L∞(Γ) norm approximately, we consider a set Θ of 500 uniformly
distributed random points in Γ and approximate, for any g ∈ C0(Γ), ∥g∥L∞(Γ)≈maxy∈Θ |g(y)|.
The computation of the L2(D) norm is carried out with Monte Carlo integration: Given f ∈
L2(D), we denote by Π a set of 500 uniformly distributed random points in D and approximate

∥f∥2L2(D)≈
1

#Π

∑
x∈Π f(x)2. The reason Monte Carlo integration is used is that for a generic y ∈ Γ

the discrete solution SI [U ](y) belongs to the finite element space S10 (T ), where T is the coars-
est common refinement of the meshes Ty. Therefore, in order to compute the exact L2(D) norm
of the function, it would be necessary to compute T , which would lead to a significant com-
putational overhead. In numerical experiments, we have observed that increasing #Π does not
lead to a significant improvement in the approximation of the L2(D) norm, thus suggesting that
the approximation error can be neglected. In the numerical examples presented in the next sec-
tions, we approximate the error between the exact solution u and a discrete solution SI [U ] by
∥u− SI [U ]∥L∞(Γ,V ) ≈ ∥uapprox − SI [U ]∥L∞(Γ,V ), where uapprox is a discrete solution obtained as the

last iteration of the single mesh version of SCFE. To approximate the L∞(Γ, V )-norm appearing
in the error, we use the same method detailed above, just with #Θ = #Π = 5000.

To drive parametric refinement, we employ only profits with work as defined in (15). As observed
in Section 2.1.4, workless profits lead to a tensor-product interpolant and thus less interesting
results. For all examples, we consider the finite element estimator is ηFE,I = η2,IΛ2,I as defined in
Section 3.3. The Dörfler parameter for refinement is chosen as θ = 0.7 and, as default mesh Tinit,
a quasi-uniform mesh with 512 triangles and 289 vertices.
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In order to decrease the memory requirements of the program, the finite element refinement
tolerance from Section 3.3 is modified as follows:

Tol := αΛ−1
2,IζSC,I ,(62)

i.e. we neglect the term depending on the margin of I. In the experiments below, we observe that
this choice does not compromise convergence. Further investigations will have to be carried out in
order to understand whether or not the sufficient condition for convergence can be weakened. The
constant α appearing in (62) is chosen as α = 0.9. A value of α close to one shifts the balance
between finite element refinement and parameter enrichment towards the latter one.

In order to improve the computational efficiency, we use the following shortcut in the implemen-
tation of Algorithm 2: Instead of re-computing the tolerance Tol at each iteration of the loop, we
update it only at the end and, if needed, keep refining the finite element solutions. We alternate
these two steps until the finite element estimator falls below the tolerance.

In the following two sections, we consider a physical domainD = (0, 1)2 and denote x = (x1, x2) ∈
D. The parametric domain is Γ = [−1, 1]N for an integer N representing the number of parametric
dimensions of the problem.

We recall that for a numerical solution SI [U ] obtained with SCFE, its number of degrees of
freedom is proportional to M :=

∑
y∈HI

#Ty, where #Ty is the number of vertices of the mesh

corresponding to the collocation point y (or equivalently the dimension of the finite element space
Vy up to boundary conditions).

4.1. First example: Karhunen–Loève expansion with N=5, 11. We consider a constant
forcing term f(x) ≡ 1 and the following diffusion coefficient with affine dependence on the parameter
y ∈ Γ:

a(x,y) = a0(x) +
1

3

(
a1(x)y1 +

N∑
n=2

an(x)yn

)
,(63)

where a0(x) ≡ 1, a1(x) ≡
(√

πL
2

)1/2
and, for n > 1,

λn =
(√

πL
)1/2

exp

(
−
(⌊

n
2

⌋
πL
)2

8

)
,

an(x) =

{√
λn sin (nπx1) if n even√
λn cos (nπx1) if n odd,

where L ∈ (0, 1) is a constant. Such a diffusion coefficient is the result of the Karhunen–Loève ex-

pansion [42] of the random field a(x, ω) with mean a0 and covariance Cov(x, x′) = 1
32

exp
(
− (x1−x′

1)
2

L2

)
,

for x, x′ ∈ D. The constant L denotes the “correlation length” of the stochastic parameter. We
choose L = 0.5, which implies

a1 ≈ 6.7 · 10−1, λ1 ≈ 6.9 · 10−1, λ2 ≈ 2.7 · 10−1, λ3 ≈ 5.8 · 10−2, λ4 ≈ 6.8 · 10−3, λ5 ≈ 4.2 · 10−4.

In the rest of this section, we truncate the expansion to N = 5 and N = 11 terms. The aim
is to study how the algorithm performs for different numbers of parametric dimensions N on an
anisotropic problem, where the first parameters are more relevant than the last ones.

In Figure 3, we use the problem with N = 5 parameters to provide the reader with a concrete
example of the steps of the algorithm. On the left, we plot the evolution of the estimators with
respect to the number of degrees of freedom. We plot the values of the estimators any time they
are computed (not only once per iteration). The algorithm alternates between steps of parameter
enrichment and mesh refinement. The spikes in the value of the finite element estimator correspond
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Figure 3. First results for SCFE applied to the problem with Karhunen–Loève expansion
N = 5. Left: “detailed” evolution of the estimators, i.e. reporting their values any time they
are computed during the execution. Right: Total, parametric and finite element estimators
at every iteration.

to the parametric enrichment steps, when new collocation points are added to the sparse grid with
the initial (coarse) mesh Tinit. When finite element refinement is carried out, the finite element

estimator eventually decreases with order M−1/2, as has to be expected for lowest order adaptive
FEM (see also Theorem 3.4). On the right-hand side of Figure 3, we plot the estimator only once
per iteration. As prescribed in (62), the finite element estimator is bounded from above by the
parametric estimator after each finite element refinement loop.

In Figure 4 we compare the results for N = 5 and N = 11. On the left, the value of total
estimator and reference error are plotted as a function of the number of degrees of freedom. The
problem withN = 11 gives larger estimator and reference error. However, the difference is marginal,
suggesting that the algorithm successfully detects the anistropy of the problem. On the right, we
plot the effectivity index (ratio between estimator and error). As observed in [32], the number of
problem dimensions affects the efficiency of the estimator. In view of these facts, the algorithm
may benefit from an adaptive dimension selection step as the one proposed in [32, Section 7].

In Figure 5, we consider the problem with N = 11 and plot projections of the final multi-index
set I. The projections are obtained selecting pairs of parametric dimensions n1, n2 ∈ 1, ..., N and
plotting the 2D set {(in1 , in2), i ∈ I}. Observe how larger values are achieved by the first parametric
dimensions, confirming that the algorithm manages to detect the anisotropy of the problem.

4.2. Second example: Inclusion problem with N=8. We consider an inclusion problem with
N = 8 parameters similar to that in [32]. Within D, we identify nine disjoint subdomains F and

{Cn}8n=1 depicted in Figure 6. The diffusion coefficient reads

a(x,y) = a0(x) +
8∑

n=1

γnχnyn with a0 ≡ 1.1,(64)

where (γn)
8
n=1 = (1, 0.8, 0.4, 0.2, 0.1, 0.05, 0.02, 0.01) are constants used to introduce anisotropy in

the problem and χn is the characteristic function of Cn, for all n ∈ 1, ..., 8. The forcing term reads
f(x) := 100χF (x), where χF is the characteristic function of F .
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Figure 4. Comparing SCFE applied to the problem with Karhunen–Loève expansion for
N = 5 and N = 11. Left: Total estimator and error. Right: Effectivity index.
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Figure 5. Projections of the final multi-index set from SCFE applied to the the problem
with Karhunen–Loève expansion for N = 11.

In order to highlight the importance of adaptive finite element refinement in space, we present a
comparison between the single mesh version of SCFE from Section 3.4, where the unique mesh is
adaptively refined with Dörfler marking, and an analogous version where only uniform refinement
on the whole mesh is allowed. In Figure 7 (top left) we report for both algorithms the value of
the estimator and reference error. The adaptive version clearly outperforms the one with uniform
refinement. In Figure 6 (right) we show a density plot of a mesh produced by the algorithm with
≈ 2 · 107 degrees of freedom. We see that mesh refinement occurs along the boundary of the
inclusions and is more pronounced for the inclusions corresponding to larger anisotropy parameter
γn, confirming that the algorithm detects the parametric structure of the problem.

In Figure 7 (top right) we study the fully adaptive SCFE algorithm and observe a clear perfor-
mance benefit for the single mesh algorithm from Section 3.4. Additional insight is given in the plot
on the bottom left of Figure 7. Here we show the value of the parametric estimator with respect to
the number of collocation point for both the fully adaptive and single mesh versions of SCFE. This
shows that the fully adaptive SCFE algorithm seems to overrefine the finite-element meshes. We
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Figure 6. Left: Domain for the inclusion problem. Right: Logarithmic density plot of a
mesh of SCFE with single adaptive mesh. The colors refer to the number of mesh elements
within one pixel of the plot.

suspect that this is due to the fact that in the derivation of ηFE,I in Section 1.3, one is required to
use the triangle inequality and thus sacrifices local information of the sparse grid interpolant. This
is not necessary in the single-mesh estimator from Section 3.4.

Finally, we ran Algorithm 1 with fixed tolerance Tol (not depending on the parametric estima-
tor) and plot the results in Figure 7 (bottom right). We observe that the results are very much
comparable to the standard fully adaptive SCFE algorithm, except for significant over refinement in
the early stages of the computation (see the flat line of the finite element error estimator satisfying
the tolerance). In terms of computational effort, the algorithms are nearly identical, as the same
spatial refinements are performed, only at different stages of the algorithm.

We also tested the algorithms with respect to the L2(Γ)-norm instead of the L∞(Γ)-norm. The
necessary changes in the estimators are straightforward, essentially we replace the search for the
maximum by a Monte Carlo quadrature. The theoretical results of this manuscript all hold verbatim
for the L2(Γ)-norm. Figure 8 shows the results. Again the single mesh algorithm outperforms the
fully adaptive algorithm.

4.2.1. Distribution of computational cost. In Figure 8 (right-hand side) we compare the total num-
ber of degrees of freedom and collocation points achieved by the three methods, i.e. the single
adaptive mesh algorithm from Section 3.4, adaptivity in the parameter space but uniform refine-
ment in the spatial domain, and the fully adaptive SCFE algorithm (Algorithm 1). The adaptive
strategy with a single adaptive mesh performs parametric refinement more often than the other two,
leading to a higher number of collocation points and lower average number of degrees of freedom per
collocation point. In Figure 9 (compare also Figure 6) we provide logarithmic density plots of the
meshes produced by the multiple adaptive mesh algorithm (with ≈ 2 · 107 degrees of freedom). We
observe that the mesh corresponding to a collocation point is locally refined along the edges of the
corresponding inclusion. Furthermore, the intensity of the refinement around a certain inclusion
is related to the constant γn of the diffusion coefficient, confirming that the numerical methods
detects the anisotropy of the problem.
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Figure 7. Results for SCFE on the 8D inclusion problem. Top left: Comparison between
adaptive and uniform space refinement with the single mesh algorithm from Section 3.4. Top
right: Total estimator and error for the fully adaptive algorithm. Bottom left: Parametric
estimator as a function of the number of collocation points, for both the fully adaptive and
the single mesh SCFE. Bottom right: the fully adaptive SCFE with fixed value for finite
element tolerance Tol.

5. Conclusion

We analyze the adaptive stochastic collocation algorithm from [32] and prove convergence of
several different versions of the algorithm:

• Convergence of the parametric enrichment algorithm without finite element refinement (Sec-
tion 2)
• Convergence of the fully adaptive algorithm (Algorithm 1) even with optimal convergence
of the finite element loop (Theorem 3.4)
• Convergence of a single-mesh variant of Algorithm 1 (Section 3.4) proposed in [32].

The numerical examples clearly show the superiority of spatial adaptive refinement combined with
parametric enrichment over pure parametric enrichment algorithms. While the theoretical results
are strongest for the fully adaptive algorithm (linear convergence in Proposition 3.2 for Algorithm 1)
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Figure 8. Left: Numerical results on the 8D inclusion problem in the L2(Γ)-norm. Right:
Total estimator and error for SCFE (fully adaptive). Right: Average number of degrees of
freedom (DOF) per collocation point (CP) plotted versus the number of collocation points.
Each line corresponds to one of the three proposed algorithms. Each marker corresponds to
one step of the adaptively refined discrete solution.

the single mesh algorithm from Section 3.4 seems to be more efficient. This is underlined by the
numerical experiments in the previous section, which clearly show an advantage of the single mesh
version over the fully adaptive version. Based on the theoretical results from Theorem 3.4 and
the experiments, we come to the conclusion that the finite element error estimator of Algorithm 1
severely over-estimates the total error and hence leads to over-refinement of the finite element
meshes. This does not seem to happen for the single-mesh error estimator. We suspect that the
application of the triangle inequality in the derivation in Section 3.3 is mainly responsible for this
over-estimation and further research is required to see whether this can be avoided.
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Figure 9. Density plot of the meshes produced by the fully adaptive SCFE algorithm.
The corresponding collocation point is indicated below, ignoring the trailing components
equal to zero. The color-bar at the bottom indicates the base-10 logarithm of the density
of elements.
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[30] Löıc Giraldi, Alexander Litvinenko, Dishi Liu, Hermann G. Matthies, and Anthony Nouy. To be or not to be
intrusive? the solution of parametric and stochastic equations—the ”plain vanilla” galerkin case. SIAM Journal
on Scientific Computing, 36(6):A2720–A2744, 2014.

[31] I.G. Graham, F.Y. Kuo, D. Nuyens, R. Scheichl, and I.H. Sloan. Quasi-Monte Carlo methods for elliptic PDEs
with random coefficients and applications. Journal of Computational Physics, 230(10):3668 – 3694, 2011.

[32] Diane Guignard and Fabio Nobile. A posteriori error estimation for the stochastic collocation finite element
method. SIAM Journal on Numerical Analysis, 56(5):3121–3143, 2018.

[33] T. J. Hastie and R. J. Tibshirani. Generalized additive models, volume 43 of Monographs on Statistics and Applied
Probability. Chapman and Hall, Ltd., London, 1990.

[34] Lukas Herrmann, Kristin Kirchner, and Christoph Schwab. Multilevel approximation of Gaussian random fields:
fast simulation. Math. Models Methods Appl. Sci., 30(1):181–223, 2020.

[35] A. N. Kolmogorov. On the representation of continuous functions of several variables by superpositions of con-
tinuous functions of a smaller number of variables. Amer. Math. Soc. Transl. (2), 17:369–373, 1961.

[36] J. Lang, R. Scheichl, and D. Silvester. A fully adaptive multilevel stochastic collocation strategy for solving
elliptic PDEs with random data. J. Comput. Phys., 419:109692, 17, 2020.

[37] Lionel Mathelin, M. Yousuff Hussaini, and Thomas A. Zang. Stochastic approaches to uncertainty quantification
in CFD simulations. Numer. Algorithms, 38(1-3):209–236, 2005.

[38] Hermann G. Matthies and Andreas Keese. Galerkin methods for linear and nonlinear elliptic stochastic partial
differential equations. Comput. Methods Appl. Mech. Engrg., 194(12-16):1295–1331, 2005.

[39] F. Nobile, R. Tempone, and C. G. Webster. An anisotropic sparse grid stochastic collocation method for partial
differential equations with random input data. SIAM J. Numer. Anal., 46(5):2411–2442, 2008.
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