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Abstract

The main problems arising from the isogeometric discretization of the Stokes problem on
trimmed domains are discussed. Taylor-Hood and Raviart-Thomas isogeometric elements
are tested on several trimmed geometries and their convergence and stability properties
analyzed. Dirichlet boundary conditions are imposed weakly through Nitsche’s method,
which makes the problem unstable for certain configurations of trimming curve and com-
putational mesh. An existing stabilization is applied following the know-how on elliptic
problems. Our numerical experiments suggest that for some trimmed domains neither
Taylor-Hood not Raviart-Thomas elements are always inf-sup stable and the question of
how to restore stability remains unanswered.





Contents

1 Introduction 1

2 Notation 3

3 Isogeometric discretization of the Stokes problem 5

3.1 Univariate B-splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Multivariate B-splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.3 B-spline geometries and B-splines in physical domain . . . . . . . . . . . . . 7

3.4 The Stokes problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.5 Discretization of the Stokes problem . . . . . . . . . . . . . . . . . . . . . . 10

3.5.1 Taylor-Hood isogeometric elements . . . . . . . . . . . . . . . . . . . 11

3.5.2 Raviart-Thomas isogeometric elements . . . . . . . . . . . . . . . . . 12

4 Trimmed isogeometric discretization of the Poisson problem 14

4.1 Trimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Notation for trimmed problems . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3 Effect of trimming on stability . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.4 A minimal stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Trimmed Taylor-Hood elements 19

5.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2 Numerical estimation of stability constants . . . . . . . . . . . . . . . . . . 21

5.3 Numerical experiments without stabilization . . . . . . . . . . . . . . . . . . 22

5.3.1 Experiments with Neumann boundary condition . . . . . . . . . . . 23

5.3.2 Experiments with (weak) Dirichlet boundary condition . . . . . . . . 26

5.4 Numerical experiments with stabilization . . . . . . . . . . . . . . . . . . . 28

6 Trimmed Raviart-Thomas elements 30

6.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2 Numerical estimation of stability constants . . . . . . . . . . . . . . . . . . 31

6.3 Numerical experiments without stabilization . . . . . . . . . . . . . . . . . . 32

6.3.1 Experiments with Neumann boundary conditions . . . . . . . . . . . 32

6.3.2 Experiments with (weak) Dirichlet boundary conditions . . . . . . . 35

6.4 Numerical experiments with stabilization . . . . . . . . . . . . . . . . . . . 36

7 Numerical experiments with different domains 39

7.1 Diagonal trimming curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.1.1 Taylor-Hood elements . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.1.2 Raviart-Thomas elements . . . . . . . . . . . . . . . . . . . . . . . . 44

7.2 Quarter plate with hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.2.1 Taylor-Hood elements . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.2.2 Raviart-Thomas elements . . . . . . . . . . . . . . . . . . . . . . . . 51

iii



8 Preconditioning 56
8.1 A diagonal preconditioner . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.2 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9 Conclusions and outlook 59
9.1 Summary of results from numerical experiments . . . . . . . . . . . . . . . . 59
9.2 Achieved goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

iv



Chapter 1

Introduction

Isogeometric analysis (IGA) [15] is a relatively recent collection of numerical methods
for the approximation of boundary value problems. IGA is characterized by the use of
spline or NURBS (Non-uniform rational B-splines) functions in the description of both the
computational domain and the numerical solution. This description of the computational
domain is particularly interesting as it allows to avoid meshing procedures that often
introduce geometric approximations or can be even difficult to terminate successfully in
the case of complex geometries. The use of B-splines as shape functions allows to obtain
numerical solutions with higher continuity compared to standard finite elements, a feature
that can be exploited to obtain more accurate solutions at the same computational cost.

The long-term aim of isogeometric analysis is to bridge the gap between Computer-
Aided Design (CAD) and numerical simulation. This is a challenging target to achieve
mainly because current CAD software do not provide a description of the geometry that
can be directly used in numerical simulation. Still, isogeometric methods attract an in-
creasing number of members of the scientific community.

In CAD, trimming is both a fundamental tool for the description of complex geometries
and a major obstacle to the integration with numerical simulation. By trimming, we refer
to the application of boolean operations (intersection, union, set difference) on geometric
object (in this context often called primitives). The fact that trimming operations cannot
be performed exactly lead to a number of issues, not only within the CAD framework but
also in numerical simulation. As a consequence, the development of numerical schemes
aimed at solving boundary value problem on domain whose description is available as a
trimmed geometry is desired.

In the present work we focus on the (incompressible) Stokes problem in fluid mechan-
ics on two-dimensional trimmed domains. The first goal of the present work is to present
a formulation of the discrete problem that allows the imposition of natural or essential
boundary conditions on the trimmed region of the boundary. As for essential boundary
conditions, they are enforced weakly through Nitsche’s method. The isogeometric spaces
we use to discretize velocity and pressure are based on Taylor-Hood and Raviart-Thomas
isogeometric elements, which proved to have good stability and convergence properties
in the untrimmed case [5]. Secondly, another goal is to carry out and analyse numerical
experiments on several trimmed geometries. These numerical experiments are aimed at
clarifying the properties of the numerical schemes at hand, in particular convergence and
stability. Convergence of approximation errors of velocity and pressure fields are studied
with respect to several norms. Stability is assessed through the approximation of continu-
ity, coercivity and inf-sup constants of appropriate differential operators. Three different
trimmed geometries are employed with the aim of highlighting how the position of the
trimming curve can influence the convergence and stability properties of the schemes.
Finally, having acknowledged the existence of configurations of trimming curves and com-
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putational meshes that impair the stability of the schemes, a stabilization first developed
for elliptic problems [6] is applied to the problem at hand.

The outline of the present work is as follows. In Chapter 2, the basic notation used
throughout the work is defined. In Chapter 3, several basic notion about the Stokes prob-
lem and its isogeometric discretization are reported. In Chapter 4, the Poisson problem
is considered to show how a regular isogeometric scheme can be modified to cope with
trimmed geometries. In addition, some stability issues are highlighted and a stabiliza-
tion aimed at curing them is introduced. In Chapter 5 and 6, numerical schemes based
on Taylor-Hood and Raviart-Thomas isogeometric elements respectively are introduced.
Additionally, the stabilization presented in Chapter 4 is applied to these schemes and nu-
merical experiments are carried out. In Chapter 7, additional numerical experiments are
carried out on different geometries. In Chapter 8, a simple preconditioner is presented.
Finally, in Chapter 9 we summarize the results of numerical experiments, the achievements
of the present work and some possible future developments.
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Chapter 2

Notation

If d is a positive integer, m,n ∈ Nd, we denote m..n = (m1..n1)× ...× (md..nd).
Given Ω, an open, connected subset of Rd (with d a positive integer) with Lipschitz
boundary, denote for all p ≥ 1

Lp(Ω) :=

{
u : Ω→ R :

∫
Ω
|u|pdx <∞

}
1 ≤ p <∞,

L∞(Ω) := {u : Ω→ R : esssupΩ|u| <∞} p =∞.

Lp(Ω) is a Banach space with the standard norm:

‖u‖Lp(Ω) := p

√∫
Ω
|u|pdx 1 ≤ p <∞,

‖u‖L∞(Ω) := esssupΩ|u| p =∞.

L2(Ω) is also a Hilbert space if equipped with the scalar product (u, v) =
∫

Ω uvdx. This

scalar product induces the norm defined above for L2(Ω) as ‖u‖L2(Ω) =
√

(u, u). The

subset of zero-average functions in L2(Ω) will be denoted:

L2
0(Ω) :=

{
v ∈ L2(Ω) :

∫
Ω
vdx = 0

}
.

The L2(∂Ω) scalar product is denoted (u, v)∂Ω :=
∫
∂Ω uvdΣ and analogously (·, ·)Γ the

L2(Γ) scalar product if Γ ⊂ ∂Ω is regular enough.
Define the Sobolev space

W k,p(Ω) :=
{
v ∈ Lp(Ω) : Dαv ∈ Lp(Ω) ∀α ∈ Nd : |α| ≤ k

}
∀k, p ≥ 1,

where α = (α1, ..., αd) ∈ Nd is a multi-index, |α| :=
∑d

i=1 |αi| and Dα represents the

differential operator ∂|α|

∂x
α1
1 ...∂x

αd
d

. The Sobolev space W k,p(Ω) is a Banach space if equipped

with the norm:

‖u‖Wk,p(Ω) :=

∑
|α|≤k

‖Dαu‖pLp(Ω)

 1
p

.

For k = 0 we observe that W k,p(Ω) = Lp(Ω) and for p = 2 we will denote Hk(Ω) :=
W k,2(Ω).
The Sobolev space Hk(Ω) is a Hilbert space with respect to the scalar product:

(u, v)Hk(Ω) :=
∑
|α|≤k

∫
Ω
DαuDαvdx
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for any k > 0. This scalar product induces the norm ‖u‖Hk(Ω) :=
√

(u, v)Hk(Ω) =

‖u‖Wk,2(Ω) and the semi-norm

|u|Wk,p(Ω) :=

∑
|α|=k

‖Dαu‖pLp(Ω)

 1
p

.

Let moreover H−k(Ω) be the dual space of Hk(Ω) and Hk− 1
2 (∂Ω) the trace space on ∂Ω.

Analogous linear spaces can be defined for vector valued functions u = (u1, ..., uq) : Ω →
Rq where q is a positive integer. Letting V be any of the linear spaces defined above, we
define the vector-valued counterpart V = (V )d :=

⊗d
i=1 V and equip it with the Euclidean

norm of the norms of the components:

‖u‖V :=

√√√√ d∑
i=1

‖ui‖2V ∀u ∈ V .

Any other lp norm could be employed and would lead to an equivalent norm.
For the Sobolev spaces Hk(Ω) (in particular for L2(Ω)) a scalar product can be defined
analogously:

(u,v)Hk(Ω) :=

√√√√ d∑
i=1

(ui, vi)
2
Hk(Ω).
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Chapter 3

Isogeometric discretization of the
Stokes problem

In the present chapter several preliminary concepts are recalled in order to fix the notation,
present the problem of interest and recall basic concept about Isogeometric methods. In
the first three sections we mainly follow [8] and [13] to present B-splines in one and several
spacial dimensions as well as the geometric description of the domain. Despite the fact
that we do not consider them here, Non Uniform Rational B-Splines (NURBS) are also a
fundamental tool for the geometrical description of the domain. An extensive treatise on
B-splines and NURBS can be found in [17].
In the fourth section the (continuous) Stokes problem is presented and its well-posedness
discussed. Finally, in the fifth section the isogeometric discretization of the Stokes problem
is discussed and Taylor-Hood and Raviart-Thomas elements are presented as examples of
stable isogeometric spaces for the problem at hand. For the formulation and well posedness
of both continuous and discrete Stokes problems we mainly follow [3] for the formulation
à la Brezzi and [20] for the formulation à la Babuska.

3.1 Univariate B-splines

Given two positive integers n, p we considered the knot vector

Ξ := {ξ1 ≤ ξ2 ≤ ... ≤ ξn+p ≤ ξn+p+1}

where the ξi are real numbers. Up to an affine transformation we can assume ξ1 = 0 and
ξn+p+1 = 1. Observe that elements in Ξ may not be unique. Given a knot vector Ξ, we
introduce the set of breakpoints formed by the elements of Ξ taken without repetition,

Z := {ζ1 < ζ2 < ... < ζN−1 < ζN} .

The set of knot spans {Ii}N−1
i=1 where Ii := (ζi, ζi+1) forms a partition of (0, 1). We can

define the measure of Ii as hi := ζi+1 − ζi for i ∈ 1..N − 1.
The set formed by the number of times each knot is repeated, the vector of knots multi-
plicities, is denote r := {ri}Ni=1 ⊂ NN . As a result, n + p + 1 =

∑N
i=1 ri. Moreover, we

assume ri < p+ 1 for all i ∈ 1..N .
The knot vector Ξ is said to be open if ξ1 = ξ2 = ... = ξp+1 and ξn = ξn+1 = ... = ξn+p+1,
or equivalently if r1 = rN = p+ 1. Knot vectors will be assumed open throughout the rest
of this report.

Given a knot vector Ξ, the B-spline basis related to Ξ,
{
B̂i,p

}n
i=1

is defined as follows
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(Cox-DeBoor formula):

B̂i,0(ζ) :=

{
1 if ξi ≤ ζ < ξi+1

0 otherwise
;

B̂i,p(ζ) :=
ζ − ξi
ξi+p − ξi

B̂i,p−1(ζ) +
ξi+p+1 − ζ
ξi+p+1 − ξi+1

B̂i+1,p−1(ζ) ∀p > 0;

where we assume 0/0 = 0.

The set
{
B̂i,p

}n
i=1

has the following properties:

• Non-negativity: B̂i,p(ζ) > 0 ∀i ∈ 1..n;

• Partition of unity:
∑n

i=1 B̂i,p(ζ) ≡ 1;

• Local support: B̂i,p(ζ) = 0 if ζ /∈ [ξi, ξi+p+1]. Therefore, each B-spline depends only
on p+ 2 knots that are collected in the local support Ξi,p := {ξj}i+p+1

j=i ;

• Piecewise polynomial: B̂i,p|[ζj ,ζj+1] ∈ Pp([ζj , ζj+1]) for each j ∈ 1..N − 1.

The linear space defined by a B-spline basis is called univariate spline space :

Spα = Spα(Ξ) := span
{
B̂i,p : i ∈ 1..n

}
,

which can also be characterized as the space of piecewise polynomials of degree p with
αj := p − rj continuous derivatives at the breakpoint ζj for all j ∈ 1..N . The number
of continuous derivatives at the breakpoints are collected in the regularity vector α :=
{αi}Ni=1. A knot multiplicity rj = p+ 1 corresponds to a regularity αj = −1, i.e. the fact
that a discontinuity is allowed at ζj .
The derivatives of splines are splines as well. It can actually be proved that the derivation
operator is bijective between two spline spaces:{

dv

dx
: v ∈ Spα

}
= Sp−1

α−1.

3.2 Multivariate B-splines

Let d be the space dimension. Assume nl ∈ N, pl ∈ N, and related knot vector Ξl :=
{ξl,i}nl+pl+1

i=1 and breakpoints Zl := {ζl,i}Nli=1 are given for all l in 1..d. Define p :=
(p1, ..., pd), n := (n1, ..., nd), N = (N1, ..., Nd) and Ξ := Ξ1 × ... × Ξd. The paramet-
ric Bézier mesh is defined as

M̂ := {Qj := I1,j1 × ...× Id,jd : Il,jl := (ζl,jl , ζl,jl+1) ∀j = (j1, ..., jd) ∈ 1..(N − 1)}

and the Qj are called Bézier elements. The Bézier mesh defines a cartesian grid on

the parametric domain Ω̂ := (0, 1)d. An element size is associated to any Q ∈ M̂ as

hQ := diam(Q) and a global mesh size as ĥ := max
{
hQ : Q ∈ M̂

}
. We may explicitly

specify the mesh-size by making it appear in the symbol, e.g. M̂h.
The set of multivariate B-splines related to Ξ is defined as:{

B̂i,p = B̂i1,p1 ...B̂id,pd : i ∈ 1..n
}
.

Several properties of univariate B-spline (in particular non-negativity, partition of unity,
local support, piecewise polynomials) generalize to multivariate B-spline. A set of multi-
variate B-splines defines a multivariate spline space:

Sp1,...,pdα1,...,αd
(M̂) = Spα(M̂) := span

{
B̂i,p(ζ) : i ∈ 1..n

}
6



where αi is the regularity vectors of Ξi for all i ∈ 1..d and α = (α1, ...,αd). The multivari-
ate spline space can be characterized as the linear space of piecewise polynomials of degree
p and with regularity across the Bézier elements given by α. More precisely, if φ ∈ Spα(M̂)
then φ|Q ∈ Pp(Q) for all Q ∈ M̂ (Pp(Q) is the space of tensor product polynomials on Q
of degree pi in the i-th direction for all i ∈ 1..d) and φ has αl,il continuous derivatives in
the l-th direction along the internal mesh faces:{

(x1, ..., xd) : xl = ζl,il , xl′ ∈ (ζl′,jl′ , ζl′,jl′+1), l′ 6= l
}

for all il ∈ 2..(ml − 1), jl′ ∈ 1..(ml′ − 1).
Moreover, the multivariate spline space can be related to the univariate spline spaces
defined by the knot vectors {Ξi}di=1 and degrees {pi}di=1 as Spα(Ξ) =

⊗d
l=1 S

pl
αl(Ξl).

3.3 B-spline geometries and B-splines in physical domain

Given a parametric mesh M̂h on the parametric domain Ω̂, consider the set C∞α1,...,αd
=

C∞α1,...,αd
(M̂h) of functions that are infinitely-many times differentiable on the interior of

any Q ∈ M̂h and whose inter-element regularity is described by α1, ...,αd as specified in
the previous section. Observe that Spα1,...,αd(M̂h) ⊂ C∞α1,...,αd

(M̂h).

Given a physical domain Ω ⊂ Rd, we assume the existence of a map F ∈ (C∞α1,...,αd
(M̂h))d

such that F (Ω̂) = Ω, where we recall that Ω̂ is the parametric domain (0, 1)d. The mapping
through F of the parametric Bézier mesh is called (physical) Bézier mesh:

M :=
{
K ⊂ Ω : K = F (Q), Q ∈ M̂

}
and the elements K ∈ M are called Bézier elements. Analogously to the case of the
parametric Bézier mesh, we associate to each K = F (Q) ∈ M an element size hK :=
‖F ‖L∞(Q)hQ and a mesh size h := max {hK : K ∈M} that may appear explicitly in the
mesh symbol as Mh. We also introduce the shape-regularity constant as the maximum
positive constant λ that satisfies:

λ ≤ minK∈M hK
h

In order to prevent the presence of singularities in the mapping F the following properties
are assumed:

• F : Ω̂→ Ω is a bi-Lipschitz homeomorphism;

• F |Q̄ ∈ C∞(Q̄) for all Q ∈ M̂;

• F−1|K̄ ∈ C∞(K̄) for all K ∈M.

We define the set of parametric mesh faces F̂h := {F̂} composed of the faces of the
parametric Bézier elements. The set of (physical) mesh faces is defined as the mapping of
the parametric mesh faces to the physical domain:

Fh :=
{
F = F (F̂ ) : F̂ ∈ F̂h

}
.

The subset Γh := {F ∈ Fh : F ∩ ∂Ω 6= ∅} is the boundary mesh and forms a partition on
∂Ω:

∂Ω =
⋃
F∈Γh

F̄ .
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To any F ∈ Γh a face-size is associated as hF := hK where K ∈Mh is the unique element
such that F ∈ ∂K.
The mapping through F of a multivariate spline space in the parametric domain V̂h :=
Spα(M̂h) defines an isogeometric discrete space:

Vh :=
{
v := ι(û) : û ∈ V̂h

}
where we have explicitly expressed the mesh-size h associated to the mesh Mh. A basis

for Vh is given by the mapping through F of
{
B̂i,p

}
i∈I

:

Vh = span
{
Bi,p := B̂i,p ◦ F−1 ∀i ∈ 1..n

}
3.4 The Stokes problem

Consider a domain Ω ⊂ Rd whose boundary is partitioned as ∂Ω = ΓD ∪ΓN , ΓD ∩ΓN = ∅
and the kinematic viscosity ν : Ω→ R, the forcing term f : Ω→ Rd, the Dirichlet datum
gD : ΓD → Rd and the Neumann datum gN : ΓN → Rd.
We consider the Stokes problem:
Find v : Ω→ Rd, p : Ω→ R such that:

−ν∆u+∇p = f in Ω

∇ · u = 0 in Ω

u = gD on ΓD

∂u

∂n
− pn = gN on ΓN

. (3.1)

In order to state the weak formulation of the Stokes problem , define V := H1(Ω) and

Q := L2(Ω). Also consider VΓD :=
{
v ∈

(
H1(Ω

)d
: v|ΓD = gD

}
which, being a closed

subset of
(
H1(Ω)

)d
, is a Hilbert spaces if equipped with the

(
H1(Ω)

)d
norm. Let now

ν ∈ W 1,∞(Ω), f ∈
(
H−1(Ω)

)d
, gD ∈

(
H1/2(Ω)

)d
and gN ∈

(
H−1/2(Ω)

)d
. Moreover,

recall from Chapter 2 that (·, ·) is the L2(Ω) scalar product and (·, ·)ΓD
the L2(ΓD) scalar

product. The weak formulation of the Stokes problem reads:
Find u ∈ VgD , q ∈ Q such that{

ν (∇u,∇v)− (∇ · v, p) = (f ,v) + (gN ,v)ΓN
∀v ∈ V0

(∇ · u, q) = 0 ∀q ∈ Q
.

The same problem can be reformulated more synthetically as:
Find u ∈ VgD , p ∈ Q such that{

a(u,v) + b(v, p) = F (v) ∀v ∈ V0

b(u, q) = 0 ∀q ∈ Q
. (3.2)

where in the case of the Stokes problem

a(u,v) := ν (∇u,∇v) ∀u,v ∈ V,
b(v, q) := − (∇ · v, q) ∀v ∈ V, q ∈ Q, (3.3)

F (v) := (f ,v) + (gN ,v)ΓN
∀v ∈ V.

The following result gives sufficient conditions for a problem in the abstract form (3.2) to
be well posed.
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Theorem 1. Consider a problem in the form (3.2) where (V, ‖·‖V ), (Q, ‖·‖Q) are Hilbert
spaces and a : V × V → R, b : V × Q → R are continuous bilinear forms, F : V → R is
linear and continuous. If:

• a(·, ·) is coercive on VkerB := {v ∈ V : b(v, q) = 0 ∀q ∈ Q}:

∃α > 0 : a(v,v) ≥ α‖v‖V ∀v ∈ VkerB (3.4)

• the inf-sup condition is satisfied:

∃β > 0 : inf
q∈Q

sup
v∈V

b(v, q)

‖v‖V ‖q‖Q
≥ β (3.5)

then it exists a unique solution (u, p) ∈ V ×Q to problem (3.2) and it satisfies:

∃C > 0 : ‖u‖V + ‖p‖Q ≤ C‖F‖V ′

Proof. See [3, Theorem 4.2.3]

This theorem can be applied to the Stokes problem to prove its well posedness. Observe
that the bilinear form a(·, ·) is actually coercive on V .
The case in which no Neumann boundary condition is enforced (ΓN = ∅) needs special
attention. As the pressure p appears only through its gradient, if p ∈ L2(Ω) is a solution,
then also p+ γ, γ ∈ R is. Therefore, in this case the mean of p is set to zero (

∫
Ω pdx = 0),

which corresponds to looking for a solution p ∈ L2
0(Ω).

An alternative to the abstract formulation (3.2) is:
Find u ∈ U such that:

A (u, v) = F(v) ∀v ∈ V, (3.6)

where, in the case of the Stokes problem,

U := VgD ×Q,
V := V0 ×Q,

A (u, v) = A ((u, p), (v, q)) := a(u,v) + b(v, p) + b(u, q), (3.7)

∀u = (u, p) ∈ U , v = (v, q) ∈ V,
F(v) = F ((v, q)) := F (v) ∀v = (v, q) ∈ V. (3.8)

The following theorem gives necessary and sufficient conditions for the well-posedness of
problems in the form (3.6).

Theorem 2. Consider a problem in the form (3.6), where (U , ‖·‖U ), (V, ‖·‖V) are Hilbert
spaces, A : U × V → R is a continuous bilinear form and F : V → R is continuous and
linear. If the following conditions hold:

inf
u∈U

sup
v∈V

A(u, v)

‖u‖U‖v‖V
> 0, inf

v∈V
sup
u∈U

A(u, v)

‖u‖U‖v‖V
> 0

then

inf
u∈U

sup
v∈V

A(u, v)

‖u‖U‖v‖V
= inf

v∈V
sup
u∈U

A(u, v)

‖u‖U‖v‖V
≡ α > 0

and it exists a unique solution u ∈ U to problem (3.6) satisfying:

‖u‖U ≤
‖F‖V ′
α

.

Proof. see [2].
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3.5 Discretization of the Stokes problem

We first present the Galerkin approximation of the abstract problem (3.2) and sufficient
conditions for its well-posedness.
Consider finite dimensional linear subspaces Vh ⊂ V and Qh ⊂ Q parametrized by h ∈ R>0

with the approximation property:

lim
h→0

inf
vh∈Vh

‖v − vh‖V = 0 ∀v ∈ V

lim
h→0

inf
qh∈Qh

‖q − qh‖Q = 0 ∀q ∈ Q.

Let moreover VgD,h and V0,h be analogous approximations of VgD and V0 respectively. We
can consider the discrete problem:
Find uh ∈ VgD,h, ph ∈ Qh such that{

a(uh,vh) + b(vh, ph) = F (vh) ∀vh ∈ V0,h

b(uh, qh) = 0 ∀qh ∈ Qh
. (3.9)

A well-posedness theorem analogous to Theorem 1 can be stated:

Theorem 3. Assume that the hypotheses of Theorem 1 are satisfied and that are given
finite-dimensional subspaces Vh ⊂ V and Qh ⊂ Q. Consider a problem in the form (3.9).
If:

• a(·, ·) is uniformly (with respect to h) coercive on VkerB,h:

∃α > 0 : ∀h > 0 a(vh,vh) ≥ α‖vh‖V ∀vh ∈ VkerB,h (3.10)

where

VkerB,h := {vh ∈ Vh : b(vh, qh) = 0 ∀qh ∈ Qh}

• the inf-sup condition is satisfied uniformly with respect to h:

∃β > 0 : ∀h > 0 inf
qh∈Qh

sup
vh∈Vh

b(vh, qh)

‖vh‖V ‖qh‖Q
≥ β (3.11)

then it exists a unique solution (uh, ph) ∈ VgD,h ×Qh which satisfies:

∃C > 0 : ‖uh‖V + ‖ph‖Q ≤ C‖F‖V ′

as well as the following error estimate:

∃C > 0 : ‖u− uh‖V + ‖p− ph‖Q ≤ C
(

inf
vh∈Vh

‖u− vh‖V + inf
qh∈Qh

‖p− qh‖Q
)

Proof. [3, Theorem 5.2.5]

In general, the well posedness of the continuous abstract problem (3.2) does not imply
the well-posedness of the discrete problem (3.9). In facts, VkerB,h may not be a subset
of VkerB, therefore the continuous coercivity (3.4) may not imply the discrete one (3.10).
Analogously, the continuous inf-sup condition (3.5) may not imply the discrete one (3.11).
In the case of the Stokes problem, as the bilinear form a(·, ·) is coercive on V , the coercivity
condition is satisfied. However, the validity of the inf-sup condition depends on the choice
of the finite dimensional spaces Vh, Qh.
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Analogously to the continuous case, problem (3.9) can be formulated as:
Find uh ∈ Uh such that:

A (uh, vh) = F(vh) ∀vh ∈ Vh (3.12)

where, in the case of the discrete Stokes problem,

Uh := VgD,h ×Qh,
Vh := V0,h ×Qh,

A and F are defined in (3.7) and (3.8) respectively.
Sufficient conditions for the well-posedness of the projection problem (3.12) are given in
the following theorem.

Theorem 4. Assume the hypotheses of Theorem 2 are satisfied and are given finite di-
mensional subspaces Uh ⊂ U , Vh ⊂ V. If moreover the following condition holds:

∃β > 0 : ∀h > 0 inf
u∈Uh

sup
v∈Vh

A(u, v)

‖u‖U‖v‖V
≥ β (3.13)

then it exists a unique solution uh ∈ Uh that satisfies:

‖u‖U ≤
‖F‖V ′
β

as well as the following approximation estimate:

‖u− uh‖U ≤
(

1 +
‖A‖
β

)
inf
wh∈V

‖u− wh‖U .

Proof. see [2].

Observe that if Uh = Vh the condition (3.13) can be substituted by the stronger
coercivity condition:

∃β̃ > 0 : ∀h > 0, u ∈ Uh A(u, u) ≥ β̃‖u‖2U . (3.14)

Indeed:

inf
u∈Uh

sup
v∈Uh

A(u, v)

‖u‖U‖v‖V
≥ inf

u∈Uh

A(u, u)

‖u‖2U
≥ β̃.

In order to distinguish the discrete inf-sup condition (3.13) on A(·, ·) from the one (3.11) on
b(·, ·), we will refer to the former as global inf-sup condition and to the quantity β appearing
in Theorem 4 as global inf-sup constant. Analogously, if we refer to the continuity of A(·, ·)
we will write global continuity and refer to its continuity constant as global continuity
constant. Analogously, condition (3.14) will be called global coercivity and the quantity β̃
global coercivity constant.

3.5.1 Taylor-Hood isogeometric elements

The family of Taylor-Hood isogeometric elements is defined as follows:

V̂ TH
h = V̂ TH

h (p, α) := Sp+1,p+1
α,α (M̂h)× Sp+1,p+1

α,α (M̂h),

Q̂TH
h = Q̂TH

h (p, α) := Sp,pα,α(M̂h)
(3.15)
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for given degree p and regularity α ∈ 0..p − 1. The choice α = 0 leads to the classical
Taylor-Hood finite elements family. The definition of Taylor-Hood spaces in the physical
domain is

V TH
h :=

{
v = v̂ ◦ F−1 ∀v̂ ∈ V̂ TH

h

}
,

QTHh :=
{
q = q̂ ◦ F−1 ∀q̂ ∈ Q̂TH

h

}
.

A proof of the inf-sup stability of the isogeometric Taylor-Hood discretization of the Stokes
problem can be found in [4]. As for convergence, the following convergence estimates are
a consequence of the results in [4] and can be observed numerically:

‖u− uh‖H1(Ω) = O(hp+1)

‖p− ph‖L2(Ω) = O(hp+1)

3.5.2 Raviart-Thomas isogeometric elements

The family of Raviart-Thomas isogeometric elements is defined as follows:

V̂ RT
h = V̂ RT

h (p, α) := Sp+1,p
α+1,α(M̂h)× Sp,p+1

α,α+1(M̂h),

Q̂RT
h = Q̂RT

h (p, α) := Sp,pα,α(M̂h)
(3.16)

for given degree p and regularity α ∈ 0..p − 1. The choice α = −1 (corresponding to
discontinuous splines across elements) is avoided, as it would lead to a nonconforming
discretization. Spaces with boundary conditions can also be defined as:

V̂ RT
0,h :=

{
v̂h ∈ V̂ RT

h : v̂h · n = 0 on ∂Ω̂
}

Q̂RT
0,h :=

{
q̂h ∈ Q̂RT

h :

∫
Ω̂
q̂hdx = 0

}
.

In the case of the spaces (3.16) (analogously for the spaces with boundary conditions), the
functional space in the physical domain are defined as:

V RT
h :=

{
v = ιV (v̂) : v̂ ∈ V̂ RT

h

}
QRT
h :=

{
q = ιQ(q̂) : q̂ ∈ Q̂RT

h

}
.

where the parametric-to-physical domain maps ιV , ιQ are defined as:

ιV (v̂) :=
DF

det(DF )
(v̂ ◦ F−1) ∀v̂ ∈ V̂ RT

h (3.17)

ιQ(q̂) := det(DF )−1(q̂ ◦ F−1) ∀q̂ ∈ Q̂RT
0,h (3.18)

where (3.17) is the Piola transform.
The definition of isogeometric Raviart-Thomas elements is motivated by the theory of
isogeometric discrete differential forms [7]. We report here some of the main definition
and results concerning their application to the Stokes problem. More detailed treatises
can be found in [5] and [13].
The Raviart-Thomas isogeometric elements have the property of producing a numerical
solution that is exactly divergence-free thanks to the following fact:

Proposition 1. If vh ∈ V RT
h and

(∇ · vh, qh) = 0 ∀qh ∈ Qh

12



then ∇ · vh ≡ 0. Moreover, if vh ∈ V RT
0,h and

(∇ · vh, qh) = 0 ∀qh ∈ QRT
0,h

then ∇ · vh ≡ 0.

Proof. see [13, Proposition 5.4.2]

Considered this fact, the maps (3.17) and (3.18) are chosen because of their divergence
and integral-preserving properties, i.e

∇ · (ιV (v̂)) = ∇̂·v̂ ∀v̂ ∈ V̂ RT
h ,∫

Ω
ιQ(q̂)dx = 0⇔

∫
Ω̂
q̂dx = 0 ∀q̂ ∈ Q̂RT

h .

As the construction of Raviart-Thomas spaces with both normal and tangential Dirichlet
boundary conditions is not as simple, it is preferred to impose the normal one strongly
and the tangential one weakly through Nitsche’s method (see [14],[18]):
Find u ∈ V RT

0,h , p ∈ QRT
0,h such that:{

ah(u,v) + b(v, p) = Fh(v) ∀v ∈ V RT
0,h

b(u, q) = 0 ∀q ∈ QRT
0,h

. (3.19)

where

ah(u,v) := (µ∇u,∇v)−
(
µ
∂u

∂n
,v

)
ΓD

−
(
µ
∂v

∂n
,u

)
ΓD

+ Cpen

( µ
H
u,v

)
ΓD

∀u,v ∈ V RT
0,h ,

Fh(v) := (f ,v) + (gN ,v)ΓN
−
(
µ
∂v

∂n
, gD

)
ΓD

+ Cpen

( µ
H
gD,v

)
K∩ΓD

∀v ∈ V RT
0,h

and b(·, ·) is defined in (3.3). Here H : ∂Ω → R>0 is a piecewise-constant function such
that h|F := hF ∀F ∈ Γh and Cpen is a constant. A proof of the stability of problem (3.19)
can be found in [13, chapter 6] and implies that the method is of order hp, i.e.

‖u− uh‖H1(Ω) + ‖p− ph‖L2(Ω) = O(hp)

On the other hand, the following convergence estimates are observed in numerical experi-
ments:

‖u− uh‖H1(Ω) = O(hp),

‖p− ph‖L2(Ω) = O(hp+1).
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Chapter 4

Trimmed isogeometric
discretization of the Poisson
problem

In the present chapter we introduce trimming. In the first section we follow [16] to give
some general notion on trimming in CAGD and present some of the main difficulties that
arise from the attempt to develop isogeometric methods to approximate boundary value
problems on trimmed domains. In the second section we introduce a notation for the
description of domains obtained by trimming. In the third section the Poisson problem is
considered to show more in detail how the discretization is adapted in the case of trimmed
problems. In addition, the main numerical issues that arise from the adoption of this
framework are highlighted with an emphasis on stability. Finally, in the fourth and last
section a minimal stabilization technique aimed at correcting the stability problems is
introduced. The content of the last two sections is based on the work that will appear in
[6].

4.1 Trimming

Trimming is a fundamental operation in CAGD (Computer-Aided Geometric Design) that
allows the representation of complex objects. However, it is also a major obstacle to the
integration of CAGD and numerical simulation.
In modern CAGD tools, a 3D object is stored through its boundary presentation (B-rep),
a collection of geometrical and topological pieces of information about its boundary. The
geometrical information consists of a collection of boundary-patches described by tensor-
product NURBS surfaces. The topological information describes the relation between the
boundary-patches through their connectivity giving information about vertices, edges and
faces. Moreover, a given continuity may be required to connect two adjacent patches.
Trimming operations allow to cut away unwanted parts of the geometrical model. This
is achieved through a change in the visualization of the object. As a consequence, the
parametrization and mathematical description of the object remain essentially the same.
A trimmed B-rep object is usually obtained as a combination of primitives, rigid motions
and boolean operations (union, intersection, difference) collected in a binary tree that
allows to define the order in which these operations are performed to obtain the desired
trimmed object starting from the primitives.
Some of the most relevant issues with trimming come from the fact that trimming op-
erations cannot be performed exactly. On one hand, the use of floating-point arithmetic
causes round-off errors that may propagate and cause inaccuracies in the description of
the model. On the other hand, several operations are the result of numerical algorithms
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(for instance, the problem of surface intersection is solved as a non-linear system of equa-
tions) that are solved up to a tolerance and therefore introduce additional errors. As a
consequence, the representation of the object could present small gaps and overlaps of the
boundary-patches that can be acceptable for visualization purposes but makes the model
unsuitable as an input for numerical algorithms.
Attempts to employ trimmed geometries in isogometric analysis can be classified in global
and local approaches. Global approaches consist in performing a remodelling stage before
the numerical simulation. The remodelling is aimed at substituting the trimmed regions
of the boundaries with regular patches that allow to apply the same numerical scheme
used on untrimmed geometries. Conversely, local approaches employ directly the trimmed
objects and therefore require a substantial adaptation of the numerical algorithm. In the
present report we will present a local approach to trimming.
In local approaches, the fact that trimmed entities preserve the parametrization of the
original untrimmed object is exploited (for instance, in the definition of shape functions).
Knot spans can be classified in interior (located within the active part of the domain),
exterior (located outside the active domain) and cut-elements (intersected by the trim-
ming curve). Cut-elements require special attention in several stages of the numerical
algorithm. A fundamental step is the classification of cut-elements depending on how
they are cut by the trimming curve. Despite the fact that the trimming curve can cut
elements in possibly complex patterns, this complexity decreases as the mesh is refined.
Cut-elements classification is needed for the integration of shape functions, an operation
that also requires dedicated quadrature rules. Another problem is the imposition of es-
sential boundary conditions on the trimming curve, that arises from the fact that the
definition of shape functions is based on the untrimmed description of the domain. Fi-
nally, depending on the relative position of elements and trimming curve the problem may
result unstable and ill-conditioned. These problems require the development of stabiliza-
tion and preconditioning techniques that reduce the sensitivity of the numerical scheme
on the relative position of mesh and trimming curve. Finally, we remark that local ap-
proaches share several features of fictitious boundary methods, such as CUT-FEM [9] and
finite-cell method [12]. Therefore, the literature on these numerical methods may suggest
solutions to problem in trimmed isogeometric analysis.

4.2 Notation for trimmed problems

In order to describe the modifications in the method needed because of the presence of
trimming, we first alter and enrich the notation established in the previous chapter.
Consider a domain Ω0 ⊂ R2 and a parametric-to-physical mapping F : Ω̂0 → Ω0 as in
section 3.3 where by Ω̂0 = (0, 1) × (0, 1) we denote the parametric domain. Let M̂0 and
M0 be the corresponding parametric and physical Bézier mesh respectively.
In general, the trimmed physical domain is defined as Ω := Ω0 \

⋃N
i=1 Ωi where {Ωi}Ni=1

is a set of open connected subsets of Ω. We restrict ourself to the case N = 1, therefore
Ω = Ω0 \ Ω1. The trimming curve is defined as T := Ω0 ∩ ∂Ω1.
Consider the new parametric domain Ω̂ := F−1(Ω), where F remains the parametric-to-
physical mapping as above. The new parametric Bézier mesh is

M̂h :=
{
Q ∈ M̂0 : Q ∩ Ω 6= ∅

}
.

The new physical Bézier mesh is defined as Mh :=
{
F (Q) : Q ∈ M̂h

}
. We also define

the Bézier cut-elements, Gh := {K ∈M : K ∩ T 6= ∅}.
Finally, given a spline-space Vh = span{Bi,p, i ∈ 1..n} on the untrimmed mesh M, we
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define the trimmed splines-space:

Ṽh = span{Bi,p|Ω, i ∈ 1..n} (4.1)

obtained by the restriction to the domain Ω of the basis of Vh.

4.3 Effect of trimming on stability

Let us first consider the Poisson problem defined on a trimmed domain Ω obtained as
defined in the previous section.
Consider f : Ω → R, a partition {ΓD,ΓN} of ∂Ω where the Dirichlet and Neumann
boundary conditions, gD : ΓD → R and gN : ΓN → R respectively, are imposed. The
problem reads:
Find u : Ω→ R such that: 

−∆u = f in Ω

u = gD on ΓD

∂u

∂n
= gN on ΓN

.

Consider now f ∈ H−1(Ω), gD ∈ h
1
2 (ΓD) and gN ∈ h−

1
2 (ΓN ) and define V := H1(Ω),

VgD :=
{
v ∈ V : v|ΓD = gD

}
and , V0 :=

{
v ∈ V : v|ΓD = 0

}
. The weak formulation of the

Poisson problem reads:
Find u ∈ VgD such that:

(∇u,∇v) = (f, v) + (gN , v)ΓN
∀v ∈ V0 (4.2)

If T ∩ ΓD 6= ∅, enforcing Dirichlet boundary conditions ”strongly” becomes cumbersome
because of the choice of the basis functions (4.1). Therefore, instead of (4.2), we opt for
the symmetric Nitsche formulation (see [14],[18]):
Find u ∈ V such that:

a(u, v) = F (v) ∀v ∈ V, (4.3)

where:

a(u, v) := (∇u,∇v)−
(
∂u

∂n
, v

)
ΓD

−
(
u,
∂v

∂n

)
ΓD

+ Cpen (u, v)ΓD
∀u, v ∈ V,

F (v) := (f, v) + (gN , v)ΓN
−
(
gD,

∂v

∂n

)
ΓD

+ Cpen (gD, v)ΓD
∀v inV

and Cpen > 0 is a given parameter.
The present formulation allows the weak enforcement of Dirichlet boundary conditions
(through the formulation of the problem rather than the functional space where the so-
lution is sought). In addition, it is symmetric, consistent and, provided Cpen > 0 is big
enough, coercive.
Given a trimmed spline-space Ṽh defined as in (4.1), the discretization of problem (4.3)
reads:
Find uh ∈ Ṽh such that:

ah(uh, vh) = Fh(vh) ∀vh ∈ Ṽh (4.4)

where:

ah(u, v) := (∇u,∇v)−
(
∂u

∂n
, v

)
ΓD

−
(
u,
∂v

∂n

)
ΓD

+ Cpen
(
H−1u, v

)
ΓD

∀u, v ∈ Ṽh (4.5)

F (v) := (f, v) + (gN , v)ΓN
−
(
gD,

∂v

∂n

)
ΓD

+ Cpen
(
H−1gD, v

)
ΓD

∀v ∈ Ṽh (4.6)
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and H : ∂Ω→ R>0 is a piecewise-constant function such that H|F := hF ∀F ∈ Γh.
We also introduce the following mesh-dependent norm:

‖v‖2
Ṽh

:= ‖∇v‖2L2(Ω) +
∥∥∥H− 1

2 v
∥∥∥2

L2(ΓD)
∀v ∈ Ṽh,

that is the natural norm for the analysis of problem.
A number of problems remain. In particular:

• problem (4.4) may be unstable (see [9], where the analogous CUT-FEM method is
presented and [10] where it is applied to the Stokes problem);

• integration algorithms over K∩Ω and over the boundaries F = T ∩K for all K ∈ Gh
need to be defined;

• problem (4.4) may be ill-conditioned, depending on the shape of the cut-elements
(see [12], where the same problem is described for the analogous finite-cell method).

As for the stability issue, it can be proved that the operation that prevents stability is
the evaluation of normal derivatives on the trimmed boundary T (appearing in the second
and third term of 4.5 and in the third term of 4.6).
When for example looking at the continuity of the bilinear form, the second term of 4.5
can be bounded as:(

∂uh
∂n

, vh

)
ΓK

≤
∥∥∥∥H 1

2
∂uh
∂n

∥∥∥∥
L2(ΓK)

∥∥∥H− 1
2 vh

∥∥∥
L2(ΓK)

∀vh ∈ Ṽh ∀K ∈Mh

where we define ΓK := ΓD ∩K for all K ∈ M. Therefore, the following trace-inequality
would be desired:

∃C > 0 :

∥∥∥∥H 1
2
∂uh
∂n

∥∥∥∥
L2(ΓK)

≤ C‖∇vh‖L2(K∩Ω) ∀vh ∈ Ṽh

where the constant C does not depend on the relative position of K and Ω. However, a
simple counter-example can be given for p = 1, so that ∇vh|K = cK is a constant:∥∥∥∥∂uh∂n

∥∥∥∥2

L2(ΓK)

= mead−1(ΓK)|cK |2

=
mead−1(ΓK)

mead(Ω ∩K)
|cK |2

∫
Ω∩K

1dx

=
mead−1(ΓK)

mead(Ω ∩K)

∫
Ω∩K
|∇vh|2dx

=
mead−1(ΓK)

mead(Ω ∩K)
‖∇vh‖2L2(Ω∩K).

Therefore C ≥ h
1
2
K

mead−1(ΓK)
mead(Ω∩K) and the quantity on the right may be unbounded in the case

of sliver-cuts as described in [11] (see figure 2(b)).

4.4 A minimal stabilization

Definition 1. Let ϑ ∈ (0, 1]. K ∈M is a good element if

mead(Ω ∩K)

mead(K)
≥ ϑ.

Otherwise we call K a bad element.
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Observe that if K ∈ Mh \ Gh then K is a good element. We also define Ggh the set of
good cut-element, Gbh the set of bad cut-element.
We assume that for any K ∈ Gbh it exists a good element K ′ ∈ Mh such that K ′ is
a neighbour of K (i.e. K and K ′ share at least a vertex). This hypothesis is always
satisfied provided the mesh is sufficiently refined. The notion of neighbour can be relaxed
as follows: K and K ′ are neighbours if and only if dist(K,K ′) ≤ Ch, where C > 0 is a
constant independent of h.
Consider an operator:

Rh : Ṽh → L2(ΓD) (4.7)

which, in a sense to be specified, approximates the normal derivative on of functions in
Ṽh on ΓD. Rh can be used to define the problem:
Find uh ∈ Ṽh such that:

aSh(uh, vh) = FSh (vh) ∀vh ∈ Ṽh (4.8)

where:

aSh(u, v) := (∇u,∇v)− (Rh(u), v)ΓD
− (u,Rh(v))ΓD

+ Cpen
(
H−1u, v

)
ΓD

∀u, v ∈ Ṽh
FS(v) := (f, v) + (gN , v)ΓN

− (gD, R(v))ΓD
+ Cpen

(
H−1gD, v

)
ΓD

∀v ∈ Ṽh.

The following theorem gives sufficient condition for problem (4.8) to be well-posed.

Theorem 5. Suppose Rh : Ṽh → L2(ΓD) satisfies the following property:∥∥∥∥h 1
2
KRh(v)

∥∥∥∥
L2(ΓK)

≤ C‖v‖H1(Ω∩K′) ∀v ∈ Ṽh,∀K ∈ Gh

where K ′ = K if K ∈ Ggh and K ′ is a good neighbour of K if K ∈ Gbh. Then, problem (4.8)

is well posed in the sense that the bilinear form aSh(·, ·) is coercive and continuous on Ṽh.

The following definition of the operator (4.7) is proposed:

Rh(v)|K := RK(v) ∀v ∈ Ṽh,K ∈ Gh,

where:

• if K ∈ Ggh
RK(v) :=

∂(v|K)

∂n
∀v ∈ Ṽh;

• if K = F (Q) ∈ Gbh, denoting K ′ = F (Q′) a good neighbour of K

RK(v) :=
∂

∂n

(
E(v̂|Q′) ◦ F−1

)
∀v ∈ Ṽh,

where v̂ = v ◦F and E : Pp(Q′)→ Pp(Q ∪Q′) is the polynomial extension operator.

It can be proved [6] that the proposed stabilization satisfies the hypotheses of Theorem 5,
therefore leads to a well-posed discrete problem (4.8).
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Chapter 5

Trimmed Taylor-Hood elements

In this chapter a numerical scheme based on the Taylor-Hood isogeometric elements is
presented. Analogously to the case of the Poisson problem presented in the previous
chapter, in the first section we define the trimmed Taylor-Hood space, then state the
formulation of the problem with weak imposition of essential boundary conditions. In
addition, the stabilization proposed at the end of the previous chapter is generalized in
order to apply it to the problem at hand. In the second section, we give some details
about the numerical estimation of the stability constant from theorems 3 and 4. In the
third section, we apply the non-stabilized scheme to problems with Neumann and weak
Dirichlet boundary conditions in order to assess its convergence and stability properties.
Finally, in the fourth section the same stability and convergence tests are repeated for the
stabilized scheme.

5.1 Problem formulation

Let us consider again the Stokes problem (3.1). As in section 4.2, we suppose an untrimmed
domain Ω0 = F (Ω̂0) is given with M̂0,h, M0,h parametric and physical Bèzier meshes

respectively. The domain Ω is obtained by trimming Ω0, the trimming curve is T . Ω̂ =
F−1(Ω) denotes the parametric domain, M̂h andMh the parametric and physical Bézier
mesh respectively, Gh the cut-elements.
We consider the Taylor-Hood isogeometric elements on Ω0 with the Bèzier meshM0,h and
recall their definition first given in section 3.5.1:

V̂h = V̂ TH
h (p, α) := Sp+1,p+1

α,α (M̂0,h)× Sp+1,p+1
α,α (M̂0,h),

Q̂h = Q̂TH
h (p, α) := Sp,pα,α(M̂0,h)

given p > 1 and α ∈ 0..p− 1. We then define the functional spaces Vh = V TH
h , Qh = QTH

h

in the physical domain Ω0 as described in section 3.5.1. Finally, the trimmed spaces for
velocity and pressure, Ṽh and Q̃h respectively, are obtained as in (4.1) by restriction of
the basis functions to Ω.
As it was the case for the Poisson problem in section 4.3, it is convenient to impose
Dirichlet boundary conditions weakly. The discrete Nitsche formulation of the problem
reads:
Find uh ∈ Ṽh, ph ∈ Q̃h such that:{

ah(uh,vh) + b̃(vh, ph) = Fh(vh) ∀vh ∈ Ṽh
b̃(uh, qh) = G(qh) ∀q ∈ Q̃h

(5.1)
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where

ah(u,v) := (µ∇u,∇v)−
(
µ
∂u

∂n
,v

)
ΓD

−
(
µ
∂v

∂n
,u

)
ΓD

+ Cpen

( µ
H
u,v

)
ΓD

∀u,v ∈ Ṽh;

(5.2)

b̃(v, q) := − (∇ · v, q) + (qn,v)ΓD
∀v ∈ Ṽh, q ∈ Q̃h; (5.3)

Fh(v) := (f ,v) + (gN ,v)ΓN
−
(
µ
∂v

∂n
, gD

)
ΓD

+ Cpen

( µ
H
gD,v

)
ΓD

∀v ∈ Ṽh;

(5.4)

G(q) := (qn, gD)ΓD
∀q ∈ Q̃h. (5.5)

Observe that the bilinear form (5.2) and the linear functional (5.4) are formally the same
as the ones used for the untrimmed Raviart-Thomas discretization presented in section
3.5.2 (in both cases the tangential component of Dirichlet boundary conditions is imposed
weakly) while the bilinear form (5.3) includes a boundary term that was not present in the
untrimmed Raviart-Thomas case (indeed, in the discretization at hand also the normal
component of Dirichlet boundry conditions is imposed weakly). Moreover the new right-
hand side (5.5) is introduced. As in the case of the Poisson problem in Chapter 4, the
constant Cpen is a positive parameter that allows to have coercivity if chosen big enough.
We observe that the present formulation is symmetric and consistent.
We also introduce the following mesh-dependent norms that will be used in the stability
analysis:

‖u‖2
Ṽh

:= |u|2H1(Ω) +
∥∥∥H− 1

2u
∥∥∥2

L2(ΓD)
∀u ∈ Ṽh, (5.6)

‖q‖2
Q̃h

:= ‖q‖2L2(Ω) +
∥∥∥H 1

2 q
∥∥∥2

L2(ΓD)
∀q ∈ Q̃h. (5.7)

We write problem (5.1) in algebraic form as well. Let us for notational simplicity denote the

B-spline basis of Ṽh as {ϕi}
NV
h

i=1 and the one of Q̃h as {ψi}
NQ
h

i=1. Also define Nh := NV
h +NQ

h ,

the dimension of the solution space Ṽh × Q̃h. Then, the algebraic form of problem (5.1)
reads: (

A B̃T

B̃ 0

)(
u
p

)
=

(
F
G

)
(5.8)

where:

A ∈ RN
V
h ,N

V
h Ai,j = ah(ϕj , ϕi) ∀i, j ∈ 1..NV

h , (5.9)

B̃ ∈ RN
Q
h ,N

V
h B̃i,j = b̃(ϕj , ψi) ∀i ∈ 1..NQ

h , j ∈ 1..NV
h , (5.10)

F ∈ RN
V
h Fi = Fh(ϕi) ∀i ∈ 1..NV

h ,

G ∈ RN
Q
h Gi = G(ψi) ∀i ∈ 1..NQ

h

and u ∈ RNV
h , p ∈ RN

Q
h are the unknown degrees of freedom of the solution. We can also

express the algebraic form of the scalar products associated to the norms (5.6) and (5.7)
as:

Mu ∈ RN
V
h ,N

V
h (Mu)i,j = (∇ϕj ,∇ϕi) +

(
1

H
ϕj , ϕi

)
ΓD

∀i, j ∈ 1..NV
h

Mp ∈ RN
Q
h ,N

Q
h (Mp)i,j = (ψj , ψi) + (Hψj , ψi)ΓD

∀i, j ∈ 1..NQ
h . (5.11)

Theorem 3 or equivalently Theorem 4 can be employed to study the well-posedness of
problem (5.1).
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Observe that the bilinear form (5.2) is analogous to the bilinear form (4.5) appearing in
the weak formulation of the Poisson problem with weak imposition of Dirichlet boundary
conditions. We stress that, while the continuity condition is also analogous, the coercivity
condition on ah(·, ·) now reads

ah(u,u) ≥ α‖u‖2
Ṽh
∀u ∈ V ker B̃

h , ∀h > 0

where V ker B̃
h :=

{
u ∈ Ṽh : b̃(u, q) = 0 ∀q ∈ Q̃h

}
. The discrete inf-sup condition in this

case reads:

∃β > 0 : ∀h > 0 inf
q∈Q̃h

sup
v∈Ṽh

b̃(v, q)

‖v‖Ṽh(Ω)‖q‖Q̃h(Ω)

≥ β.

The stability issues observed in section 4.3 appear also in the present problem (5.1), thus
the stable approximation of normal derivatives presented in section 4.4 is applied. In this
case the stabilization operator reads:

Rh : Ṽh →
(
L2(ΓD)

)d
Rh(vh)|K := RK(vh) ∀vh ∈ Ṽh,K ∈ Gh,

where:

• if K ∈ Ggh
RK(vh) :=

∂(vh|K)

∂n
vh ∈ Ṽh;

• if K = F (Q) ∈ Gbh, denoting K ′ = F (Q′) a good neighbour of K

RK(vh) :=
∂

∂n

(
E(v̂h|Q′) ◦ F−1

)
vh ∈ Ṽh, (5.12)

where E : (Pp(Q′))d → (Pp(Q ∪Q′))d is the vectorial polynomial extension operator.

The stabilized version of the problem reads:{
aSh(uh,vh) + b̃(vh, ph) = FSh (vh) ∀vh ∈ Ṽh

b̃(uh, qh) = G(qh) ∀q ∈ Q̃h
(5.13)

where now

aSh(u,v) := (µ∇u,∇v)− (µR(u),v)ΓD
− (µR(v),u)ΓD

+ Cpen

( µ
H
u,v

)
K∩ΓD

∀u,v ∈ Ṽh;

(5.14)

FSh (v) := (f ,v) + (gN ,v)ΓN
− (µR(v), gD)ΓD

+ Cpen

( µ
H
gD,v

)
K∩ΓD

∀v ∈ Ṽh.

(5.15)

5.2 Numerical estimation of stability constants

The global stability of problem (5.1) or of the stabilized problem (5.13) can be assessed by
estimating the global coercivity and continuity constants, here denoted α and C respec-
tively, as suggested in Theorem 4 and the following remark. This can be achieved solving
a generalized eigenvalue problem. For example, for problem (5.1):

min {λi}Nhi=1 ≥ α, max {λi}Nhi=1 ≤ C
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where {λi}Nhi=1 are the eigenvalues of the generalized eigenvalue problem:
Find x ∈ RNh \ {0}, λ ∈ R:

Dx = λMx (5.16)

where

D :=

(
A B̃T

B̃ 0

)
∈ RNh,Nh , M :=

(
Mu 0
0 Mp

)
∈ RNh,Nh .

The Taylor-Hood elements will be considered stable with respect to h if the estimates of
the global coercivicty and continuity constants, α and C, and the inf-sup constant β (in
the sense of Theorem 3) converge to finite values as h tends to zero. Moreover, they will be
considered stable with respect to the trimming if α, C and β do not depend on the position
of the trimming curve T . We remark that the value of the minimum eigenvalue depends
on the parameter Cpen (if Cpen is increased, also the minimum eigenvalue increases).
Therefore, obtaining a negative estimate of the global coercivity constant with e.g. Cpen =
1 does not imply that the scheme is unstable but only that a bigger Cpen is needed. The inf-
sup stability in the sense of Theorem 3 is also studied because it is equivalent to coercivity
and continuity of the global bilinear form if the ”coercivity on the kernel” condition (3.10)
holds. We report the method used in [1] to estimate the inf-sup constant β:

αh = min {√γi}Nhi=1 ≥ β,

where {γi}
NQ
h

i=1 are the eigenvalues of the generalized eigenvalue problem:

Find x ∈ RN
Q
h \ {0}, γ ∈ R:

B̃A−1B̃Tx = γMpx.

5.3 Numerical experiments without stabilization

In the following tests the effect of the position of the trimming curve with respect to
the knotlines is studied. In particular, we look at the convergence with respect to mesh
refinement of the error for different trimming-to-element ratios, i.e. fixing a constant ratio
ρ between the distance of a straight trimming line from a knot-line and the mesh-size.
Moreover, the stability tests presented in the previous sections are performed.
We start by introducing the domain that will be used for the numerical experiments using
the notation detailed in section 4.2. On the parametric domain Ω̂ a number of elements per
side n is fixed and a uniform tensor product mesh M̂h is defined, where h = 1

n is the length
of the side of each element. Fixed a trimming-to-element ratio ρ, a trimming size δ = ρh
is defined. The parametric (trimmed) domain is then defined as Ω̂ = (0, 1)× (0, 1−h+ δ)
and the trimming curve is T = {(x, 1− h+ δ) : x ∈ (0, 1)}. The parametric-to-physical

mapping F (x, y) =
(
x, y

1−h+δ

)
is chosen in order to obtain Ω = (0, 1) × (0, 1). This

example is chosen because of the presence of a sliver cut (in the sense already mentioned
in section 4.3). Therefore, when weak Dirichlet boundary conditions are imposed on the
trimmed side, the stability issues presented above should appear.
Errors are computed with respect to the following manufactured solution:

u : Ω ⊂ R2 → R2 u(x, y) :=

− sin(πx)
π2 · cos(y)

cos(πx)
π · sin(y)


p : Ω ⊂ R2 → R p(x, y) := −cos(πx) cos(y)

π
.

Observe that u is divergence-free.
Numerical experiments are presented in the subsequent sections using either Neumann
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Figure 5.1: Example of trimmed domain with h = 0.25 (4 elements per side) and ρ = 1
2 . The

grey lines delimit the untrimmed meshM0,h (that, in this case, also corresponds to the meshMh),
the red line is the trimming curve, red dots indicate quadrature points on untrimmed elements,
the blue ones the quadrature points on the cut-elements.

or Dirichlet boundary conditions on the side {(x, 1) : x ∈ (0, 1)} of the physical domain
Ω (the side that corresponds to the trimming curve T ). For all the following numerical
experiments Dirichlet boundary conditions are imposed in the classical way on the side
{(x, 0) : x ∈ (0, 1)} and homogeneous Neumann boundary conditions are imposed on the
sides {(0, y) : y ∈ (0, 1)} and {(1, y) : y ∈ (0, 1)}.
We choose degree p = 3 splines with regularity α = 2. Integration of basis functions on
each element is performed using a Gaussian quadrature rule with p+ 1 Gaussian quadra-
ture points per parametric direction. To approximate integrals on the boundary, p + 1
quadrature nodes are used. In figure 5.1 an example of trimmed domain and quadra-
ture points on each element is shown. When Dirichlet boundary conditions are enforced
weakly, the stabilization constant Cpen = 10p is chosen. Stability tests are also performed
as explained in the previous section. The penalization constant for the weak imposition
of Dirichlet boundary conditions is put to Cpen = 1.
For both numerical verifications of the convergence rate and stability of the problems
we test trimming-to-element ratios ρ ∈

{
10−1, 10−4, 10−7, 10−10

}
and mesh-sizes h ∈{

2−1, 2−2, 2−3, 2−4, 2−5, 2−6
}

.
All numerical tests were carried out using the Matlab library GeoPDEs [19]. When solving
linear systems, the simple diagonal preconditioner described in chapter 8 is applied.

5.3.1 Experiments with Neumann boundary condition

We impose inhomogeneous Neumann boundary conditions on the side {(x, 1) : x ∈ (0, 1)}
with datum:

g : {(x, 1) : x ∈ (0, 1)} → R2 g(x) :=

 sin(1) sin(πx)
π2

2 cos(1) cos(πx)
π

 (5.17)

A visual comparison of the exact and numerical solution computed with h = 2−3 and
ρ = 0.5 is shown in figure 5.2 for velocity and pressure. Error distributions and the diver-
gence of the numerical solution are shown in figure 5.3.
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(a) Comparison of exact and numerical velocity

(b) Comparison of exact and numerical pressure

Figure 5.2: Comparison of exact solution and numerical velocity (a) and pressure (b) obtained
with Taylor-Hood elements on trimmed domain.

(a) Error distribution on the velocity, componentwise.

(b) Error distribution on the pres-
sure.

(c) Divergence of numerical solu-
tion

Figure 5.3: Error distribution of the numerical velocity (a) and pressure (b) obtained with Taylor-
Hood elements on a trimmed domain. Divergence of the numerical solution (c). all quantities as
plotted in log-scale.
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Figure 5.4: Taylor-Hood with Neumann B.C.: errors (L2 and H1 norms for the velocity, L2 norm
for the pressure) for decreasing mesh sizes h and values of the trimming-to-element ratio ρ. For
each value of ρ, the total error (continuous line) is split in the error on untrimmed (dashed fine
line) and cut-elements (dashed line).
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Figure 5.5: Taylor-Hood with Neumann B.C.: numerical estimates of global coercivity, global
continuity and inf-sup constants for decreasing mesh sizes h and values of the trimming-to-element
ratio ρ.

In figure 5.4 the L2, H1 error for velocity and L2 for pressure are plotted for the values
of ρ and h listed above. Moreover, the total error (continuous line) is split in the error
computed on untrimmed (dashed fine line) and cut-elements (dashed line). In all cases
the total error follows the expected convergence rate for Taylor-Hood elements. The error
on the untrimmed elements dominates the error on trimmed elements. Observe that the
errors on cut-elements as a function of h are roughly parallel for different values of ρ and
their offset is proportional to

√
ρ. For both H1 error for velocity and L2 error for pressure,

the error on cut-elements corresponding to ρ ∈ {10−7, 10−10} stops decreasing for the
smallest values of h. Moreover, for ρ = 10−10 the errors stop decreasing when they reach a
higher value than in the case ρ = 10−7. This effect is attributed to round-off errors in the
assembly of the Neumann boundary condition that become evident when ρ is small. In
particular, some of the operations affected by these errors are the placement of quadrature
points and in the evaluations of basis functions.
The stability of the method is assessed by estimating the global coercivity and continuity

constants as explained in the section 5.2. In figure 5.5 these quantities are plotted for
the same values of ρ and h that were used for the convergence test. In can be observed
that both estimates converge as h decreases and the limit is independent of the value of
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Figure 5.6: Taylor-Hood with weak Dirichlet B.C.: errors (L2 and H1 norms for the velocity, L2

norm for the pressure) for decreasing mesh sizes h and values of the trimming-to-element ratio ρ.
For each value of ρ, the total error (continuous line) is split in the error on untrimmed (dashed
fine line) and cut-elements (dashed line).

the trimming-to-element ratio ρ. Observe that the fact that the estimate of the coercivity
constant converges to a negative value does not mean that the scheme is unstable. As
mentioned above, the value of the Nitsche parameter is set to Cpen = 1 for stability tests
but leads to a positive coercivity constant if sufficiently big (e.g. Cpen = 10(d+ 1) used in
the convergence tests). The estimate of the inf-sup constant, shown in the last sub-plot
of figure 5.5, shows that (for the problem at hand) the Taylor-Hood elements are inf-sup
stable independently of the ratio ρ.

5.3.2 Experiments with (weak) Dirichlet boundary condition

The same setting as in the previous section is employed, except that the Neumann con-
dition on {(x, 1) : x ∈ (0, 1)} is substituted by a (inhomogeneous) Dirichlet condition en-
forced weakly as described in section 5.1.
As in the previous section, in figure 5.6 the error for velocity and pressure is show in several
norms. Similar problems as those shown in the case of Neumann boundary conditions can
be observed. In particular, for the smallest values of ρ the error on cut-elements does not
decrease as expected when h decreases, instead it may have a sharp growth (H1 error of the
velocity for ρ = 10−10) or increase steadily (L2 error of the pressure for ρ = 10−7, 10−10).
In figure 5.7 we also plot the convergence test in the mesh-dependent norms (5.6) for
velocity and (5.7) for pressure, that are the natural norms for the analysis of the method.
For the smallest values of ρ the error on the pressure is dominated by the error on the cut
elements and the trimmed boundary and increases slightly as h decreases. This behaviour
is again attributed to round-off errors.
The results of the stability tests are shown in figure 5.8. As predicted in section 5.2,
the global coercivity and continuity constants are highly affected by the valued of the
trimming-to-element ratio ρ. In facts, as ρ tends to 0, the global coercivity (resp. continu-
ity) constant decrease (resp. increases) indefinitely, showing that the numerical scheme is
not uniformly stable with respect to ρ. By contrast, the inf-sup condition seems to be sat-
isfied uniformly in ρ with a slightly higher inf-sup constant for the largest ratio ρ = 10−1.
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Figure 5.7: Taylor-Hood with weak Dirichlet B.C.: errors (norm (5.6) for the velocity, (5.7) for
the pressure) for decreasing mesh sizes h and values of the trimming-to-element ratio ρ. For each
value of ρ, the total error (continuous line) is split in the error on untrimmed (dashed fine line)
and cut-elements (dashed line).
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Figure 5.8: Taylor-Hood with weak Dirichlet B.C.: numerical estimates of global coercivity, global
continuity and inf-sup constants for decreasing mesh sizes h and values of the trimming-to-element
ratio ρ.
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5.4 Numerical experiments with stabilization

In light of the results show in the previous section, in particular the lack of stability of the
scheme, we now test the stabilized scheme (5.13). The stabilization is applied on every
element for all values of ρ, in other words every cut element is considered a bad cut element
(equivalently, the parameter ϑ in definition 1 is chosen as ϑ = 1). The convergence test
plotted in figure 5.9 shows the beneficial effect of the stabilization. Unlike the results
shown in figure 5.9, the L2 error for the pressure has the expected behaviour and the H1

error on the velocity, although still suffering from round-off errors, is lower compared to
the non-stabilized case.
These observations are confirmed by the convergence test in the mesh-dependent norms
shows in figure 5.10
The stability tests for the stabilized scheme are show in figure 5.11. Global coercivity and
continuity constants converge to real numbers as h decreases and unlike the non-stabilized
case these values are only mildly dependent on the value of ρ and becomes independent
as ρ → 0. The inf-sup constant has the same behaviour as the previous case, showing
that the stabilization does not affect negatively the inf-sup stability of the Taylor-Hood
elements.
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Figure 5.9: Stabilized Taylor-Hood with weak Dirichlet B.C.: errors (L2 and H1 norms for the
velocity, L2 norm for the pressure) for decreasing mesh sizes h and values of the trimming-to-
element ratio ρ. For each value of ρ, the total error (continuous line) is split in the error on
untrimmed (dashed fine line) and cut-elements (dashed line).
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Figure 5.10: Stabilized Taylor-Hood with weak Dirichlet B.C.: errors (norm (5.6) for the velocity,
(5.7) for the pressure) for decreasing mesh sizes h and values of the trimming-to-element ratio ρ.
For each value of ρ, the total error (continuous line) is split in the error on untrimmed (dashed
fine line) and cut-elements (dashed line).
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Figure 5.11: Stabilized Taylor-Hood with weak Dirichlet B.C.:numerical estimates of global
coercivity, global continuity and inf-sup constants for decreasing mesh sizes h and values of the
trimming-to-element ratio ρ.
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Chapter 6

Trimmed Raviart-Thomas
elements

In this chapter a numerical scheme based on the Raviart-Thomas isogeometric elements
is presented following the same structure of the previous chapter. In the first section
we define the trimmed Raviart-Thomas space, then state the formulation of the problem
with weak imposition of essential boundary conditions with and without stabilization. In
the second section we give some details about the numerical estimation of the stability
constant from theorems 3 and 4. In the third section, we apply the non-stabilized scheme
to problems with Neumann and weak Dirichlet boundary conditions in order to assess its
convergence and stability properties. Finally, in the fourth section the same stability and
convergence tests are repeated for the stabilized scheme.

6.1 Problem formulation

Let us consider again the Stokes problem (3.1). As in section 4.2, we suppose an untrimmed
domain Ω0 = F (Ω̂0) is given with M̂0,h, M0,h parametric and physical Bèzier meshes

respectively. The domain Ω is obtained by trimming Ω0, the trimming curve is T . Ω̂ =
F−1(Ω) denotes the parametric domain, M̂h andMh the parametric and physical Bézier
mesh respectively, Gh the cut-elements.
We consider the Raviart-Thomas isogeometric elements on Ω0 with Bézier meshM0,h and
recall their definition first given in section 3.5.2:

V̂h = V̂ RT
h (p, α) := Sp+1,p

α+1,α(M̂0,h)× Sp,p+1
α,α+1(M̂0,h),

Q̂h = Q̂RT
h (p, α) := Sp,pα,α(M̂0,h)

for given degree p and regularity α ∈ 0..p − 1. The functional spaces Vh = V RT
h and

Qh = QRT
h on the physical domain Ω0 are defined as in section 3.5.2 through the diver-

gence and integral-reserving maps (3.17), (3.18). Finally, the trimmed spaces for velocity
and pressure, Ṽh and Q̃h respectively, are obtained as in (4.1) by restriction of the basis
functions to Ω.
As for the Taylor-Hood elements presented in the previous section, we impose Dirichlet
boundary conditions weakly. The problem reads:
Find uh ∈ Ṽh, ph ∈ Q̃h such that:{

ah(uh,vh) + b̃(vh, ph) = Fh(vh) ∀vh ∈ Ṽh
b(uh, qh) = 0 ∀q ∈ Q̃h

(6.1)

where ah(·, ·), b̃(·, ·) and Fh are defined as in (5.2)-(5.4) and b(·, ·) as in (3.3). To write

the problem in algebraic form we denote the B-spline basis of Ṽh as {ϕi}
NV
h

i=1 and the one
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of Q̃h as {ψi}
NQ
h

i=1 and define Nh := NV
h +NQ

h . Then, the algebraic form of (6.1) reads:(
A B̃T

B 0

)(
u
p

)
=

(
F
0

)
(6.2)

where A, B̃ are defined as in (5.9), (5.10) and

B ∈ RN
Q
h ,N

V
h B̃i,j = b(ϕj , ψi) ∀i ∈ 1..NQ

h , j ∈ 1..NV
h .

Observe that the present problem formulation is consistent but not symmetric. This prob-
lem differs from (5.1) in the second row. This choice is made to preserve the divergence-
conforming property of Raviart-Thomas isogeometric elements.
Because of the lack of symmetry of problem (6.1), Theorem 3 cannot be directly applied
to study its well-posedness. However, Theorem 4 can be applied, as problem (6.1) can be
recasted in the form:
Find uh ∈ Uh such that

A (uh, vh) = F(vh) ∀vh ∈ Vh
where

Uh = Vh := Ṽh × Q̃h,
A (uh, vh) = A ((uh, ph), (vh, qh)) := a(uh,vh) + b̃(vh, ph) + b(uh, qh)

∀uh = (uh, ph) ∈ Uh, vh = (vh, qh) ∈ Vh,
F(vh) = F ((vh, qh)) := F (vh) ∀vh = (vh, qh) ∈ Vh.

The norm used in the analysis is:

‖uh‖Uh :=
√
‖uh‖2Ṽh + ‖ph‖2Q̃h ∀uh = (uh, ph) ∈ Uh.

where ‖·‖Ṽh , ‖·‖Q̃h are defined in (5.6), (5.7).
In this case, the stabilization operator defined in the previous section takes a slightly
different form. In facts, (5.12) must be substituted by:

RK(vh) :=
∂

∂n
ιV
(
E(v̂h|Q′)

)
vh ∈ Ṽh,

where ιV is the div-preserving transformation (3.17).
The stabilized version of the problem reads:{

aSh(uh,vh) + b̃(vh, ph) = FSh (vh) ∀vh ∈ Ṽh
b(uh, qh) = 0 ∀q ∈ Q̃h

(6.3)

where aSh(·, ·) and FSh (·) are defined as for Taylor-Hood elements in (5.14) and (5.15)
respectively.

6.2 Numerical estimation of stability constants

As for the case of the trimmed Taylor-Hood elements, the continuity and coercivity con-
stants can be estimated solving a generalized eigenvalue problem in the form (5.16), where
now:

D :=

(
A B̃T

B 0

)
∈ RNh,Nh , (6.4)

the stiffness matrix of the problem at hand. We stress that, being the problem non-
symmetric, eigenvalues may have a non-zero imaginary part. Therefore, the eigenvalues
with maximum and minimum real part will be approximated and used as estimates.
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6.3 Numerical experiments without stabilization

Analogously to what was done for Taylor-Hood elements in the previous chapter, the
convergence and stability of problem (6.1) with Raviart-Thomas elements is studied. The
square domain described in section 5.3 is used. In particular, the trimming-to-element
ratio ρ is varied in order to asses the effect of the distance of the trimming line from the
closes knots-line on convergence and stability.
The same manufactured solution (5.3) is used, with either Dirichlet or Neumann boundary
conditions on the trimmed side. The spline space for pressures is again chosen to have
degree p = 3 and regularity α = 2. The Nitsche parameter is Cpen = 10(d + 1) for
convergence tests, Cpen = 1 for stability tests. Finally, the same trimming-to-element
ratios ρ ∈

{
10−1, 10−4, 10−7, 10−10

}
and mesh-sizes h ∈

{
2−1, 2−2, 2−3, 2−4, 2−5, 2−6

}
are

tested. When solving linear systems, the simple diagonal preconditioner described in
chapter 8 is applied.

6.3.1 Experiments with Neumann boundary conditions

A Neumann boundary condition with datum (5.17) is imposed on the trimmed side
{(x, 1), x ∈ (0, 1)}. A visual comparison of the exact and numerical solution computed
with h = 2−3 and ρ = 0.5 in figure 6.1 for velocity and pressure respectively. Error dis-
tributions and the divergence of the numerical solution are shown in figure 6.2. We stress
that, as it can be seen in the last sub-plot of figure 6.2, the divergence of the numerical
solution is zero up to machine precision.
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(a) Comparison of exact and numerical velocity

(b) Comparison of exact and numerical pressure

Figure 6.1: Comparison of exact solution and numerical velocity (a) and pressure (b) obtained
with Raviart-Thomas elements on trimmed domain.
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(a) Error distribution on the velocity, componentwise.

(b) Error distribution on the pressure. (c) Divergence of numerical solution

Figure 6.2: Error distribution of the numerical velocity (a) and pressure (b) obtained with
Raviart-Thomas elements on a trimmed domain. Both quantities as plotted in log-scale. Diver-
gence of the numerical solution (c) in log-scale.

In figure 6.3 the L2, H1 error for velocity and L2 for pressure are plotted for the values
of ρ and h listed above. Moreover, the total error (continuous line) is split in the error
computed on untrimmed (dashed fine line) and cut-elements (dashed line). In all cases the
total error follows the expected convergence rate for Raviart-Thomas elements. The error
on the untrimmed elements dominates the error on trimmed elements. Observe that the
errors on cut-elements as a function of h are roughly parallel for different values of ρ and
their offset is proportional to

√
ρ. For both H1 error for velocity and L2 error for pressure,

the error on cut-elements corresponding to ρ ∈ {10−7, 10−10} decreases sub-optimally for
the smallest values of h. Moreover, for ρ = 10−10 the errors stop decreasing when they
reach a higher value than in the case ρ = 10−7. As in the case of Taylor-Hood elements,
this effect is attributed to round-off errors in the assembly of the Neumann boundary
condition that become evident when ρ is small.
The stability of the method is assessed by estimating the global coercivity and continuity

constants as explained in the section 6.2. In figure 6.4 these quantities are plotted for
the same values of ρ and h that were used for the convergence test. In can be observed
that both estimates converge as h decreases and the limit is independent of the value of
the trimming-to-element ratio ρ. The estimate of the inf-sup constant, shown in the last
sub-plot of figure 6.4, seems not to converge as quickly as h is decreased. However, it can
be seen that its variation between subsequent mesh-sizes h is decreasing.
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Figure 6.3: Raviart-Thomas with Neumann B.C.: errors (L2 and H1 norms for the velocity, L2

norm for the pressure) for decreasing mesh sizes h and values of the trimming-to-element ratio ρ.
For each value of ρ, the total error (continuous line) is split in the error on untrimmed (dashed
fine line) and cut-elements (dashed line).
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Figure 6.4: Raviart-Thomas with Neumann B.C.: numerical estimates of global coercivity, global
continuity and inf-sup constants for decreasing mesh sizes h and values of the trimming-to-element
ratio ρ.
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Figure 6.5: Raviart-Thomas with weak Dirichlet B.C.: comparison of divergence of numerical
solution obtained with the non-symmetric formulation (6.1)(a) and the symmetric one (5.1) (b) in
log-scale.
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Figure 6.6: Raviart-Thomas with weak Dirichlet B.C.: errors (L2 and H1 norms for the velocity,
L2 norm for the pressure) for decreasing mesh sizes h and values of the trimming-to-element ratio
ρ. For each value of ρ, the total error (continuous line) is split in the error on untrimmed (dashed
fine line) and cut-elements (dashed line).

6.3.2 Experiments with (weak) Dirichlet boundary conditions

As done in section 5.3.2, a (inhomogeneous) Dirichlet condition enforced weakly as de-
scribed in section 6.1.
We stress once more that the choice of the non-symmetric formulation (6.1) over the sym-
metric one (5.1) is made in order to preserve the divergence-conforming property of Raviart
Thomas elements. In figure 6.5 it can be seen that while the non-symmetric formulation
leads to a divergence-free numerical solution (up to machine precision), the symmetric one
does not share this property. In figure 6.6 the error for velocity and pressure is show in
several norms. Unlike the case of Neumann boundary conditions or Taylor-Hood elements,
the error follows the expected trend and is not affected by the limitations of floating-point
arithmetic as seen above. In figure 6.7 we also plot the convergence test in the mesh-
dependent norms (5.6) for velocity and (5.7) for pressure, that are the natural norms for
the analysis of the method. Also in this case both velocity and pressure errors follow the
expected trend.
The results of the stability tests are shown in figure 6.8. Despite the good convergence just

observed, the estimates of global coercivity and continuity constants are highly affected
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Figure 6.7: Raviart-Thomas with weak Dirichlet B.C.: errors (norm (5.6) for the velocity, (5.7)
for the pressure) for decreasing mesh sizes h and values of the trimming-to-element ratio ρ. For
each value of ρ, the total error (continuous line) is split in the error on untrimmed (dashed fine
line) and cut-elements (dashed line).
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Figure 6.8: Raviart-Thomas with weak Dirichlet B.C.:numerical estimates of global coercivity,
global continuity and inf-sup constants for decreasing mesh sizes h and values of the trimming-to-
element ratio ρ.

by the valued of the trimming-to-element ratio ρ analogously to the case of Taylor-Hood
elements. By contrast, the inf-sup constant converges as h is decreased to a positive finite
value for all the values of the trimming-to-element ratio ρ.

6.4 Numerical experiments with stabilization

The stabilized scheme (6.3) is employed. The stabilization is applied on every element
for all values of ρ, in other words every cut element is considered a bad cut element
(equivalently, the parameter ϑ in definition 1 is chosen as ϑ = 1). The results of the
convergence test are plotted in figure 6.9. Surprisingly, the application of the stabilization
seems to damage the convergence of the scheme for the smallest value of ρ. In particular,
the total L2 error for velocity is roughly constant for the two smallest mesh-sizes h and
the total L2 error on the pressure increases. For all three norms the error on cut-elements
is sub-optimal for the smallest values of ρ and h. Analogous observations can be made
observing the convergence test in the mesh-dependent norms shows in figure 6.10
The stability tests for the stabilized scheme are show in figure 6.11. Global coercivity and

continuity constants converge to real numbers as h decreases and unlike the non-stabilized

36



10
-2

10
-1

10
0

10
-15

10
-10

10
-5

10
0

=0.1

=0.0001

=1e-07

=1e-10

h
4

10
-2

10
-1

10
0

10
-10

10
-5

10
0

=0.1

=0.0001

=1e-07

=1e-10

h
3

10
-2

10
-1

10
0

10
-15

10
-10

10
-5

10
0

=0.1

=0.0001

=1e-07

=1e-10

h
4

Figure 6.9: Stabilized Raviart-Thomas with weak Dirichlet B.C.: errors (L2 and H1 norms for
the velocity, L2 norm for the pressure) for decreasing mesh sizes h and values of the trimming-
to-element ratio ρ. For each value of ρ, the total error (continuous line) is split in the error on
untrimmed (dashed fine line) and cut-elements (dashed line).
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Figure 6.10: Stabilized Raviart-Thomas with weak Dirichlet B.C.: errors (norm (5.6) for the
velocity, (5.7) for the pressure) for decreasing mesh sizes h and values of the trimming-to-element
ratio ρ. For each value of ρ, the total error (continuous line) is split in the error on untrimmed
(dashed fine line) and cut-elements (dashed line).
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Figure 6.11: Stabilized Raviart-Thomas with weak Dirichlet B.C.:numerical estimates of global
coercivity, global continuity and inf-sup constants for decreasing mesh sizes h and values of the
trimming-to-element ratio ρ.
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case these values are only mildly dependent on the trimming-to-element ratio ρ. The inf-
sup constant has the same behaviour as the previous case, showing that the stabilization
does not affect negatively the inf-sup stability of the Raviart-Thomas elements.
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Chapter 7

Numerical experiments with
different domains

In the present chapter, different trimmed domains are considered and the same stabil-
ity and convergence analysis performed in the previous chapters is carried out. In the
first section, a square domain with a diagonal trimming curve is examined. For both
Taylor-Hood and Raviart-Thomas elements, the schemes with and without stabilization
are assessed. In the second section, the trimming curve is a a quarter of circumference and
leads to a trimmed domain that represents a quarter of a plate with a hole. We remark
that some of the results presented in this section, such as the suboptimal convergence rate
for the pressure obtained from Raviart-Thomas elements, may be caused by problems in
the implementation. Therefore, a more detailed analysis of the code is required.

7.1 Diagonal trimming curve

We consider the untrimmed parametric domain Ω̂0 = (0, 1) × (0, 1) and the identity as
parametric-to-physical mapping F , so that Ω0 = Ω̂0. The parametric untrimmed mesh
M̂0,h is again defined in a tensor product fashion fixing a number of elements per side n,
so that h = 1

n . The trimming curve in this case is:

Tδ :=
{

(x, y) ∈ Ω̂0 : y = x+ 0.75 + δ
}

where the trimming thickness δ is a positive real parameter (smaller than 0.25 to avoid

trivial cases). The trimmed domain is Ω̂ = Ω :=
{

(x, y) ∈ Ω̂0 : y ≤ x+ 0.75 + δ
}

. An

example of such trimmed domain with δ = 0.05 is given in figure 7.1 for two different
meshes (h = 0.25 and h = 0.125). We remark that the active regions of cut-elements
(highlighted in green in the figure) have two possible shapes: they are either pentagons or
triangles. In figure 7.1 we also mark with a black line the boundaries of the tiles the active
regions of cut-elements are divided into (the pentagons are divided in two quadrilaterals).
This subdivision is used to place quadrature nodes.
We study convergence and stability of the method while refining the mesh (h ∈ {2−1, 2−2,
2−3, 2−4, 2−5, 2−6}) and decreasing δ (δ ∈ {10−2, 10−5, 10−8}). Observe that, unlike
the mesh used in the previous section, no sliver-cut is present. As a matter of facts, as
δ decreases either both area and perimeter of the active parts of cut-elements tend to 0
(the triangles) or neither of the two (pentagons). As a consequence, we do not expect to
observe the stability issues that were predicted in Chapter 4. However, the active part of
cut-elements either tends to zero (triangles) or approximates a triangle (pentagons) as δ
tends to zero, which may cause issues.
The same manufactured solution used in the two previous sections is employed. As

39



0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7.1: Example of trimmed domain with diagonal trimming curve with two meshes.

for boundary conditions, we employ classical Dirichlet conditions on {(x, 0) : x ∈ (0, 1)}
and {(1, y) : y ∈ (0, 1)}, Neumann boundary conditions on {(x, 1) : x ∈ (0.25− δ, 1)} and
{(0, y) : y ∈ (0, 0.75 + δ)} and weak Dirichlet boundary conditions on
{(x, x+ 0.75 + δ), x ∈ (0, 0.25− δ)}. For both Taylor-Hood and Raviart-Thomas elements
we will choose degree p = 3 and regularity α = 2 (as in the definitions (3.15) and (3.16)).
In this case (d + 3)2 quadrature points are used to integrate the shape functions on the
active part of cut-elements and d+ 3 on their boundary. If only (d+ 1)2 and d+ 1 quadra-
ture nodes were used as in chapters 5 and 6 the integration of shape functions would be
inaccurate. As in the previous chapter, when studying convergence the Nitsche parameter
is defined as Cpen = 10(d + 1) while when studying stability as Cpen = 1. The diagonal
preconditioner described in chapter 8 is used.

7.1.1 Taylor-Hood elements

We start by showing an example of numerical solution obtained with Taylor-Hood elements
with n = 8 elements per parametric direction. in figure 7.2 the computed velocity, pressure
and divergence of the velocity are plotted. In figure 7.3 the error distribution for velocity
and pressure are plotted. The convergence and stability tests carried out in the previous
two chapters for Taylor-Hood elements are repeated. In figure 7.4 and 7.5 the convergence
analysis for standard and mesh-dependent norms respectively are plotted. Th error follows
the theoretical Taylor-Hood convergence rates except for the pressure error measured in
the mesh-dependent norm 5.7 for the smallest values of the trimming-thickness δ. This
phenomenon is probably caused by round-off errors as seen in chapter 5. In figure 7.6 the
results of the stability tests are shown. The estimates of global coercivity and continuity
constants seem to converge to real values as h is decreased independently of the trimming-
thickness δ. Finally, a dependence between the inf-sup constant and the value of δ can
clearly be observed. In particular, as δ decreases also the inf-sup constant decreases. By
contrast, as h decreases the inf-sup constant increases and seems to converge (for the values
of h tested here) only in the case δ = 0.01. The present behaviour of the inf-sup constant
(that was not seen in the previous numerical experiments) may be caused by the different
shapes taken by the active parts of cut-elements. The same convergence and stability
analysis is carried out applying the stabilization (5.13). The parameter to distinguish
bad and good cut-elements is chosen as ϑ = 0.25 in order to apply the stabilization on
cut-elements with triangular active region only. The results of the convergence tests in
figures 7.7 and 7.8 show that the application of the stabilization does not have a big
impact of the convergence properties of the scheme. Finally, the stability test in figure
7.6 shows that appying the stabilization makes global coercivity and continuity constant
completely independent of δ, while in the case of the scheme without stabilization values
of the stability constants were different for δ = 10−2.
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(a)

(b) (c)

Figure 7.2: Computed velocity (a) and pressure (b) obtained with Taylor-Hood elements on
trimmed domain with diagonal trimming curve. Divergence of the numerical solution (c).

(a)

(b)

Figure 7.3: Error distribution of the numerical velocity (a) and pressure (b) obtained with
Taylor-Hood elements on a trimmed domain. Both quantities as plotted in log-scale.

41



10
-2

10
-1

10
0

10
-15

10
-10

10
-5

=0.01

=1e-05

=1e-08

h
5

10
-2

10
-1

10
0

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

=0.01

=1e-05

=1e-08

h
4

10
-2

10
-1

10
0

10
-10

10
-5

10
0

=0.01

=1e-05

=1e-08

h
4

Figure 7.4: Taylor-Hood on domain with diagonal trimming curve: errors (L2 and H1 norms for
the velocity, L2 norm for the pressure) for decreasing mesh sizes h and values of the trimming-
thickness δ. For each value of δ, the total error (continuous line) is split in the error on untrimmed
(dashed fine line) and cut-elements (dashed line).
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Figure 7.5: Taylor-Hood on domain with diagonal trimming curve: errors (norm (5.6) for the
velocity, (5.7) for the pressure) for decreasing mesh sizes h and values of the trimming-thickness
δ. For each value of δ, the total error (continuous line) is split in the error on untrimmed (dashed
fine line) and cut-elements (dashed line).
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Figure 7.6: Taylor-Hood on domain with diagonal trimming curve: numerical estimates of global
coercivity, global continuity and inf-sup constants for decreasing mesh sizes h and values of the
trimming-thickness δ.
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Figure 7.7: Stabilized Taylor-Hood on domain with diagonal trimming curve: errors (L2 and H1

norms for the velocity, L2 norm for the pressure) for decreasing mesh sizes h and values of the
trimming-thickness δ. For each value of δ, the total error (continuous line) is split in the error on
untrimmed (dashed fine line) and cut-elements (dashed line).
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Figure 7.8: Stabilized Taylor-Hood on domain with diagonal trimming curve: errors (norm (5.6)
for the velocity, (5.7) for the pressure) for decreasing mesh sizes h and values of the trimming-
thickness δ. For each value of δ, the total error (continuous line) is split in the error on untrimmed
(dashed fine line) and cut-elements (dashed line).
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Figure 7.9: Stabilized Taylor-Hood on domain with diagonal trimming curve: numerical estimates
of global coercivity, global continuity and inf-sup constants for decreasing mesh sizes h and values
of the trimming-thickness δ.
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(a)

(b) (c)

Figure 7.10: Computed velocity (a) and pressure (b) obtained with Raviart-Thomas elements on
trimmed domain with diagonal trimming curve. Divergence of the numerical solution (c).

7.1.2 Raviart-Thomas elements

We start by showing an example of numerical solution obtained with Raviart-Thomas
elements with n = 8 elements per parametric direction. in figure 7.10 the computed
velocity, pressure and divergence of the velocity are plotted. In figure 7.11 the error
distribution for velocity and pressure are plotted. Analogously to the previous section,
convergence and stability tests are first presented for the scheme without stabilization.
The convergence tests presented in figures 7.12 and 7.13 show that while the velocity error
has the expected rate of convergence, both L2 and mesh-dependent errors on the pressure
are sub-optimal by one order. Moreover, in the case of the mesh-dependent norm (5.7)
it can be seen that the error increases when δ is decreased. The results of the stability
test in figure 7.14 shows a behaviour that is similar to the one seen above in the case of
Taylor-Hood elements. Global coercivity and continuity constants seem to be bounded
both as functions of h and δ, the inf-sup constant again decreases with δ, increases slightly
with respect to h and seems to converge only for δ = 0.01. The stabilized scheme defined
in (6.3) is applied with ϑ = 0.25 again to stabilize only on the cut-elements with triangular
active region. Convergence results can be seen in figure 7.15 and 7.16. As in the case of
the experiments without stabilization, the pressure converges sub-optimally in both the
norms. However, in this case the error on cut-elements is higher when δ = 10−2 and for
the other values of δ is about the same order of the error on untrimmed elements(unlike
in the non-stabilized case). The stability test in figure 7.17 shows that the application of
the stabilization makes the global continuity and coercivity constant less dependent on δ
than in the previous case, while the values of the inf-sup constant are unchanged.
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(a)

(b)

Figure 7.11: Error distribution of the numerical velocity (a) and pressure (b) obtained with
Raviart-Thomas elements on a trimmed domain. Both quantities as plotted in log-scale.
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Figure 7.12: Raviart-Thomas on domain with diagonal trimming curve: errors (L2 and H1 norms
for the velocity, L2 norm for the pressure) for decreasing mesh sizes h and values of the trimming-
thickness δ. For each value of δ, the total error (continuous line) is split in the error on untrimmed
(dashed fine line) and cut-elements (dashed line).
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Figure 7.13: Raviart-Thomas on domain with diagonal trimming curve: errors (norm (5.6) for
the velocity, (5.7) for the pressure) for decreasing mesh sizes h and values of the trimming-thickness
δ. For each value of δ, the total error (continuous line) is split in the error on untrimmed (dashed
fine line) and cut-elements (dashed line).
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Figure 7.14: Raviart-Thomas on domain with diagonal trimming curve: numerical estimates of
global coercivity, global continuity and inf-sup constants for decreasing mesh sizes h and values of
the trimming-thickness δ.
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Figure 7.15: Stabilized Raviart-Thomas on domain with diagonal trimming curve: errors (L2

and H1 norms for the velocity, L2 norm for the pressure) for decreasing mesh sizes h and values of
the trimming-thickness δ. For each value of δ, the total error (continuous line) is split in the error
on untrimmed (dashed fine line) and cut-elements (dashed line).

46



10
-2

10
-1

10
0

10
-8

10
-6

10
-4

10
-2

10
0

=0.01

=1e-05

=1e-08

h
3

10
-2

10
-1

10
0

10
-8

10
-6

10
-4

10
-2

10
0

=0.01

=1e-05

=1e-08

h
4

Figure 7.16: Stabilized Raviart-Thomas on domain with diagonal trimming curve: errors (norm
(5.6) for the velocity, (5.7) for the pressure) for decreasing mesh sizes h and values of the trimming-
thickness δ. For each value of δ, the total error (continuous line) is split in the error on untrimmed
(dashed fine line) and cut-elements (dashed line).
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Figure 7.17: Stabilized Raviart-Thomas on domain with diagonal trimming curve: numerical
estimates of global coercivity, global continuity and inf-sup constants for decreasing mesh sizes h
and values of the trimming-thickness δ.
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7.2 Quarter plate with hole

The same setting of the previous section is considered. However, this time the trimming
curve is:

Tδ :=
{

(x, y) ∈ Ω̂0 : x2 + y2 = (0.5− δ)2
}

where the trimming thickness δ is a positive real parameter smaller than 0.5 to avoid

trivial cases. The trimmed domain is Ω̂ = Ω :=
{

(x, y) ∈ Ω̂0 : x2 + y2 ≥ (0.5− δ)2
}

.

An example of such trimmed domain with δ = 0.01 is given in figure 7.18 for h = 0.25
and h = 0.125. We remark that in this case the active part of trimmed elements can
take a number of different shapes and can change in different ways as δ tends to zero. In
particular, both sliver cuts and triangular elements may be present, possibly leading to the
instabilities observed in the previous numerical experiments. We study convergence and
stability of the method for the same values of h and δ used in the previous section. Also
the same manufactured solution is used. In this case boundary conditions are: classical
Dirichlet conditions on {(1, y) : y ∈ (0, 1)} and {(x, 1) : x ∈ (0, 1)}, Neumann boundary
conditions on {(x, 0) : x ∈ (0.5− δ, 1)} and {(0, y) : y ∈ (0.5− δ, 1)} and weak Dirichlet

boundary conditions on
{

(x,
√

(0.5− δ)2 − x2, x ∈ (0, 0.5− δ)
}

. For both Taylor-Hood

and Raviart-Thomas elements we choose degree p = 3 and regularity α = 2 (as in the
definitions (3.15) and (3.16)). In this case (d+10)2 quadrature points are used to integrate
the shape functions on the active part of cut-elements and d + 10 on their boundary.
This increased value is again needed to accurately approximate integrals on cut-elements
(but note that in may not be the lowest). In this case the Nitsche parameter is set to
Cpen = 10(d+ 1) while when studying stability as Cpen = 1. The diagonal preconditioner
described in chapter 8 is used.

7.2.1 Taylor-Hood elements

We start by showing an example of numerical solution obtained with Taylor-Hood elements
with n = 8 elements per parametric direction. in figure 7.19 the computed velocity,
pressure and divergence of the velocity are plotted. In figure 7.20 the error distribution
for velocity and pressure are plotted. Convergence and stability tests are carried out for
Taylor-Hood elements in the present setting. In figure 7.21 and 7.22 the convergence
analysis for standard and mesh-dependent norms respectively is plotted. Th error follows
the theoretical Taylor-Hood convergence rates. In figure 7.23 the results of the stability
tests are shown. The estimates of global coercivity and continuity constants seem to
diverge as h decreases for all values of δ. This can be attributed to the presence of
sliver-cuts (for instance, in the leftmost and rightmost elements in mesh). The estimate
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Figure 7.18: Example of trimmed domain with circular curve with two meshes.
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(a)

(b) (c)

Figure 7.19: Computed velocity (a) and pressure (b) obtained with Taylor-Hood elements on
trimmed domain with circular trimming curve. Divergence of the numerical solution (c).

(a)

(b)

Figure 7.20: Error distribution of the numerical velocity (a) and pressure (b) obtained with
Taylor-Hood elements on the trimmed domain with circular trimming curve. Both quantities as
plotted in log-scale.
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Figure 7.21: Taylor-Hood on domain with circular trimming curve: errors (L2 and H1 norms
for the velocity, L2 norm for the pressure) for decreasing mesh sizes h and values of the trimming-
thickness δ. For each value of δ, the total error (continuous line) is split in the error on untrimmed
(dashed fine line) and cut-elements (dashed line).
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Figure 7.22: Taylor-Hood on domain with circular trimming curve: errors (norm (5.6) for the
velocity, (5.7) for the pressure) for decreasing mesh sizes h and values of the trimming-thickness
δ. For each value of δ, the total error (continuous line) is split in the error on untrimmed (dashed
fine line) and cut-elements (dashed line).
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Figure 7.23: Taylor-Hood on domain with circular trimming curve: numerical estimates of global
coercivity, global continuity and inf-sup constants for decreasing mesh sizes h and values of the
trimming-thickness δ.
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Figure 7.24: Stabilized Taylor-Hood on domain with circular trimming curve: errors (L2 and
H1 norms for the velocity, L2 norm for the pressure) for decreasing mesh sizes h and values of the
trimming-thickness δ. For each value of δ, the total error (continuous line) is split in the error on
untrimmed (dashed fine line) and cut-elements (dashed line).
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Figure 7.25: Stabilized Taylor-Hood on domain with circular trimming curve: errors (norm (5.6)
for the velocity, (5.7) for the pressure) for decreasing mesh sizes h and values of the trimming-
thickness δ. For each value of δ, the total error (continuous line) is split in the error on untrimmed
(dashed fine line) and cut-elements (dashed line).

of the inf-sup constant tends to zero as h decreases for all δ. While in the case of the
diagonal trimming curve the inf-sup constant has an abrupt decrese for δ ∈ {10−5, 10−8},
in this case the decrease is less sudden but is present for all values of δ. The same
convergence and stability analysis is carried out applying the stabilization (5.13). The
parameter to distinguish bad and good cut-elements is chosen as ϑ = 0.01. The results
of the convergence tests in figures 7.24 and 7.25 show that as in the non-stabilized case
the optimal Taylor-Hood rates of convergence are obtained. Finally, the stability test
in figure 7.26 shows that the application of the stabilization prevent global coercivity
and continuity constants to diverge as h decreases. In this case the estimates of the two
stability constants seem to oscillate but remain bounded. Results for inf-sup stability are
as in the non-stabilized case.

7.2.2 Raviart-Thomas elements

We start by showing an example of numerical solution obtained with Raviart-Thomas
elements with n = 8 elements per parametric direction. in figure 7.27 the computed
velocity, pressure and divergence of the velocity are plotted. In figure 7.28 the error
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Figure 7.26: Stabilized Taylor-Hood on domain with circular trimming curve: numerical esti-
mates of global coercivity, global continuity and inf-sup constants for decreasing mesh sizes h and
values of the trimming-thickness δ.

(a)

(b) (c)

Figure 7.27: Computed velocity (a) and pressure (b) obtained with Raviart-Thomas elements on
the trimmed domain with circular trimming curve. Divergence of the numerical solution (c).
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(a)

(b)

Figure 7.28: Error distribution of the numerical velocity (a) and pressure (b) obtained with
Raviart-Thomas elements on the trimmed domain with circular trimming curve. Both quantities
as plotted in log-scale.

distribution for velocity and pressure are plotted. Convergence and stability tests are first
presented for the scheme without stabilization. The convergence tests presented in figures
7.29 and 7.30 show that while the velocity errors have the expected rate of convergence,
both L2 and mesh-dependent errors on the pressure show an irregular behaviour. The
results of the stability test are analogous to the ones obtained with Taylor-Hood elements
on the same domain. In particular, global coercivity and continuity constant diverge as h
decreases for all values of the trimming-thickness δ. The inf-sup constant tends to zero as
h tends to zero for all δ. The stabilized scheme defined in (6.3) is applied with ϑ = 0.01.
Convergence results can be seen in figure 7.32 and 7.33. Again, the convergence rates for
velocity are the expected ones. As for the errors on the pressure, it can be seen that it
decreases more regularly than in the non-stabilized case, however it does so with a slightly
suboptimal rate. The effect of the stabilization on the stability constants is analogous to
the one seen in the case of Taylor-Hood elements on the same domain. Global continuity
and coercivity constants are now bounded with respect to h for all δ and the inf-sup
constant still tends to zero as h is decreased.
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Figure 7.29: Raviart-Thomas on domain with circular trimming curve: errors (L2 and H1 norms
for the velocity, L2 norm for the pressure) for decreasing mesh sizes h and values of the trimming-
thickness δ. For each value of δ, the total error (continuous line) is split in the error on untrimmed
(dashed fine line) and cut-elements (dashed line).
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Figure 7.30: Raviart-Thomas on domain with circular trimming curve: errors (norm (5.6) for the
velocity, (5.7) for the pressure) for decreasing mesh sizes h and values of the trimming-thickness
δ. For each value of δ, the total error (continuous line) is split in the error on untrimmed (dashed
fine line) and cut-elements (dashed line).
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Figure 7.31: Raviart-Thomas on domain with circular trimming curve: numerical estimates of
global coercivity, global continuity and inf-sup constants for decreasing mesh sizes h and values of
the trimming-thickness δ.
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Figure 7.32: Stabilized Raviart-Thomas on domain with circular trimming curve: errors (L2 and
H1 norms for the velocity, L2 norm for the pressure) for decreasing mesh sizes h and values of the
trimming-thickness δ. For each value of δ, the total error (continuous line) is split in the error on
untrimmed (dashed fine line) and cut-elements (dashed line).

10
-2

10
-1

10
0

10
-8

10
-6

10
-4

10
-2

10
0

=0.01

=1e-05

=1e-08

h
3

10
-2

10
-1

10
0

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

=0.01

=1e-05

=1e-08

h
4

Figure 7.33: Stabilized Raviart-Thomas on domain with circular trimming curve: errors (norm
(5.6) for the velocity, (5.7) for the pressure) for decreasing mesh sizes h and values of the trimming-
thickness δ. For each value of δ, the total error (continuous line) is split in the error on untrimmed
(dashed fine line) and cut-elements (dashed line).
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Figure 7.34: Stabilized Raviart-Thomas on domain with circular trimming curve: numerical
estimates of global coercivity, global continuity and inf-sup constants for decreasing mesh sizes h
and values of the trimming-thickness δ.
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Chapter 8

Preconditioning

In this short chapter we define the preconditioner employed in the numerical experiments
presented in the previous chapters. In the first section, an intuitive explanation of the
behaviour of the conditioning number for the problem at hand and the preconditioner is
defined. In the second section numerical experiments are presented to assess the effective-
ness of the preconditioner for both Taylor-Hood and Raviart-Thomas elements.

8.1 A diagonal preconditioner

We consider the linear system:

Sx = b

that can correspond either to the algebraic form of the Taylor-Hood problem (5.8) or the
Raviart-Thomas problem (6.2). The problem can be ill-conditioned depending on the size
of the cut-elements. As suggested in [12], ill-conditioning is caused by the presence of cut-
elements K ∈ Gh that have an active part K ∩ Ω that consist of a small volume fraction
of K. The following diagonal preconditioner is proposed:

P :=

(
PA 0
0 Pp

)
(8.1)

where

PA ∈ RN,N (PA)i,j =
δi,j√
(A)i,j

,

Pp ∈ RN,N (Pp)i,j =
δi,j√

(Mp)i,j
,

δi,j is the classical Kronecker symbol, A is the first block of both the Taylor-Hood and
Raviart-Thomas stiffness matrix (5.9) andMp ∈ RM,M is the mass matrix (5.11) associated
to the norm (5.7). The following centered preconditioning strategy is applied:

1. Solve PSP x̄ = Pb

2. Compute x = P−1x̄.

8.2 Numerical experiments

As an example, we assemble the stiffness matrix of the problem with weak Dirichlet bound-
ary conditions presented in section 5.3.2 (for Taylor-Hood elements) or 6.3.2 (for Raviart-
THomas elements) and observe what is the effect of the preconditioner proposed in the
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Figure 8.1: Taylor-Hood with weak Dirichlet B.C.: comparison of 1-conditioning number without
(left) and with (right) application of diagonal preconditioning for decreasing mesh-sizes h and
trimming-to-element ratio ρ.

previous section on the conditioning number. We consider the 1-conditioning number
κ(A) := ‖A‖1

∥∥A−1
∥∥

1
where ‖A‖1 := maxx∈RN

‖Ax‖
‖x‖ . The 1-conditioning number is es-

timated by the Matlab function condest. Results for the Taylor-Hood elements can be
seen in figure 8.1, while those for Raviart-Thomas elements can be seen in figure 8.2. In
both cases, without preconditioning the conditioning number is strongly influenced by
the trimming-to-element ratio and reaches, for the smallest values of ρ values far beyond
acceptable. The application of the preconditioner leads in both cases to a reduction of the
conditioning number for the same values of ρ. However, there is still a dependence of the
value on ρ.
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Figure 8.2: Raviart-Thomas with weak Dirichlet B.C.: comparison of 1-conditioning number
without (left) and with (right) application of diagonal preconditioning for decreasing mesh-szes h
and trimming-to-element ratio ρ.
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Chapter 9

Conclusions and outlook

This final chapter starts with a summary of the results from the numerical experiments
carried out in the previous chapters. The subsequent section describes which of the goals
set in the introduction have been achieved. The final section describes possible future
developments of the present work.

9.1 Summary of results from numerical experiments

In this section the results from the numerical experiments carried out in chapters 5, 6, 7
and 8 are summarized and their main features highlighted. Several trimming curves are
considered in order to analyse the effect of the position of the trimming curve with respect
to knot-lines of the mesh on the stability and convergence of the schemes. In chapter 5 and
6 the case of sliver-cuts, for which the trimming curve runs parallel and relatively close to
a knot-line, is analysed. We observe that imposing Neumann boundary conditions on the
trimmed portions of the boundary does not lead to stability issues and the convergence
rates are optimal. By contrast, imposing Dirichlet boundary conditions weakly on the
trimmed boundary causes the problem’s stability (in particular continuity and coercivity)
to depend on the position of the trimming curve with respect to the closes knot-line. As
a possible solution, the stabilization reported in Chapter 4 is adapted to the problem at
hand and successfully applied to make the stability properties of the problem independent
of the position of the trimming curve. In the case of sliver-cuts, we observe that the
inf-sup stability of the problem is not damaged. Different trimming curves are considered
in Chapter 7, in particular a diagonal line that is not parallel to any knot-line and a
quarter of circumference. In the case of the diagonal trimming line, the stability problems
observed in the previous case do not reappear (indeed, no sliver cut-elements is present),
however it appears that both Taylor-Hood and Raviart-Thomas spaces are not inf-sup
stable. This effect may be related to the possible degenerate shapes that the active parts
of cut-elements can take in this setting, in particular small triangles and pentagons with
two short sides. Finally, in the case of the quarter of circumference, both stability issues
observed above appear (cut-elements can take both the degenerate shapes observed in the
two previous cases). The loss of coercivity and continuity can again be cured applying
the stabilization. In all cases the diagonal preconditioner described in Chapter 8 allows to
sensibly reduce the conditioning number of the problems, but not to make it independent
of the position of the trimming curve. Finally, we remark that for trimming curves that
lead to small active regions of cut-elements, round-off errors can limit the accuracy of the
solution.
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9.2 Achieved goals

In the present work the isogeometric discretization of the Stokes problem on trimmed do-
mains is analysed. Problem formulations are derived for Taylor-Hood and Raviart-Thomas
isogeometric elements. We remark that, at the cost of employing a non-symmetric formu-
lation, the divergence-conforming property of Raviart-Thomas elements allows to produce
divergence-free numerical solutions. The imposition of essential boundary conditions is
carried out in a weak fashion thorough Nitsche’s method. The stability and convergence
of the numerical scheme is analysed through several numerical experiments characterized
by different trimming curves. As the numerical experiments confirm the presence of sta-
bility problems for some configurations of trimming curves and meshes, a stabilization
strategy first introduced for the Poisson problem is adapted and successfully applied to
cure the stability issues. Numerical experiments also confirm or suggest the presence of
other possible problems. For instance, problems related to conditioning and round-off
errors and the possible loss of inf-sup stability for some configurations of trimming curve
and mesh.

9.3 Outlook

Finally, we outline some possible further developments of the present work. Firstly, we
remark that some of the results presented in Chapter 7, in particular the ones obtained
with Raviart-Thomas elements, cannot be completely explained (e.g. suboptimal con-
vergence of the errors on the pressure). Therefore, the implementation requires a more
in-depth analysis. Secondly, the body of numerical experiments could be enlarged, for
instance considering different trimming curves and boundary conditions (observe that the
case of a Neumann boundary conditions on the trimmed boundary is not presented in
chapter 7). Moreover, the case in which both a complex trimming curve and a non-trivial
parametric-to-physical mapping are present still has to be studied. Finally, all experiments
should be repeated with different spline degrees and regularities. As for conditioning, a
preconditioner that makes the conditioning of the problem independent of the position of
the trimming curve is desired. As for inf-sup stability, if the results from chapter 7 are
confirmed, a more detailed study of the effect of trimming on inf-sup stability may be
needed. The problematic trimming configurations should be identified and a stabilization
strategy derived. Finally, the numerical experiments presented in this work may suggest
possible directions for theoretical developments, such as proofs of the well posedness of
the stabilized schemes.
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